现有的研究关注于容量、内阻和 SOC 不一致对电池组性能的影响。不少学者在这三个参数不一致的条件下建立电池组模型,进而估计电池组的 SOC和 SOE 。有考虑单体间 SOC 差异,通过结合“平均电池”和每个单体之间的差异,完成电池组 SOC 的估计。
有建立均值模型,该模型考虑了电池 SOC 和内阻不一致,完成电池组 SOC估计。
有在考虑 SOC 和内阻不一致基础上,设计了一个模糊系统,以提高电池不一致性下 SOC估计的准确性和适应性。
有结合均值模型和差异模型,在内阻、库伦效率和荷电状态不一致下对电池组 SOC 进行了估计,同时采用联合算法降低估算复杂度。
有考虑单体参数间的差异,提出了一种自适应加权估计能量状态(state of energy,SOE)方法,该方法可以使电池组的 SOE 在充电开始时与最强电池的参考 SOE 非常接近,在充放电结束时与最弱电池的参考 SOE 非常接近。
有通过对电池工作模式进行划分,进一步降低了基于自适应加权策略的 SOE 估计量。同样,电池组峰值功率预测中的不一致性问题也得到了足够的重视。
有通过对 N 个单体串联的电池系统重复 N 次操作,计算不一致下电池组的可用功率。有建立平均电池模型,获取考虑参数差异下的电池组峰值功率。
为减小计算时间和存储空间,有提出通过引出特征电压筛选出代表性电池,然后采用双 AEKF 算法对代表性电池的电压和 SOC 进行参数估计,进而完成电池组峰值功率的预测。