从稀疏表示到低秩表示(四)

本文探讨了从稀疏表示到低秩表示的研究,重点关注Group Sparsity的概念及其在非负矩阵分解(NMF)中的应用。Group Sparsity旨在通过l1,q-norm正则化实现组内的共享稀疏模式,用于数据挖掘、文本处理、生物信息学等多个领域。文章介绍了Group Lasso、稀疏组lasso等方法,并讨论了使用混合范数正则化的NMF优化策略,包括块坐标下降法。" 111498664,10293737,WebLogic Windows 补丁安装步骤详解,"['WebLogic', '中间件', '打补丁', '安全', 'Windows']
摘要由CSDN通过智能技术生成

确定研究方向后一直在狂补理论,最近看了一些文章,有了些想法,顺便也总结了representation系列的文章,由于我刚接触,可能会有些不足,愿大家共同指正。

从稀疏表示到低秩表示系列文章包括如下内容:

一、 sparse representation

二、NCSR(NonlocallyCentralized Sparse Representation

三、GHP(GradientHistogram Preservation

四、Group sparsity 

五、Rankdecomposition



四、Group sparsity 

此部分是上篇的续篇,介绍sparse representation 的改进

Group sparsity 


  • 8
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值