从稀疏表示到低秩表示(三)

本文是关于从稀疏表示到低秩表示系列的第三部分,主要探讨GHP(Gradient Histogram Preservation)方法。GHP旨在在图像去噪过程中,在一定程度上保留纹理结构。通过CVPR 2013和TIP 2014的两篇论文,作者提出了一种基于梯度直方图保全的图像去噪技术,以增强纹理细节的保留。更多内容敬请关注作者的CSDN博客。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

确定研究方向后一直在狂补理论,最近看了一些文章,有了些想法,顺便也总结了representation系列的文章,由于我刚接触,可能会有些不足,愿大家共同指正。

从稀疏表示到低秩表示系列文章包括如下内容:

一、 sparse representation

二、NCSR(NonlocallyCentralized Sparse Representation

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值