1 函数参数解析
layers.Input(
shape=None,
batch_size=None,
name=None,
dtype=None,
sparse=False,
tensor=None,
ragged=False,
**kwargs,
)
Returns:
A tensor.
参数:
-
shape: 函数的输入形状,数据的形式为元组(元组参数要为int型),不包含batch大小的那个维度。如果你有某个维度的信息不知道,则可以表示为None
-
batch_size: 一个可选的参数(整数类型),用来声明你网络训练batch的大小
-
name: 给你的这层网络创建一个名字,名字应该在你的所有网络层中是不重复的,默认参数为None,系统会自动取名字。
-
dtype: 你输入的具体的数据的类型。有很多可选的参数,一般情况下我们选择 tf.float32 的类型,因为在精度满足的情况下,float32运算更快。
-
sparse: 指定要创建的占位符是否为稀疏的布尔值。 “参差的”和“稀疏的”中只有一个是真的。 请注意,如果sparse为False,稀疏张量仍然可以被传递到输入中——它们将被致密化为默认值0。
-
tensor: 一个可选的参数,将现有张量包装到输入层。如果设置了,图层将对这个张量使用 tf.TypeSpec。 而不是创建一个新的占位符张量。
ragged: 一个布尔值,指定要创建的占位符是否不规则。 “参差的”和“稀疏的”中只有一个是真的。 在本例中,“shape”参数中的“None”值表示