OpenCV Canny 源码注释与分析

OpenCV Canny 源码注释与分析  

                                                                    (转者注:源码基于opencv-1.0.0)


    1986年,John F.Canny 完善了边缘检测理论,Canny算法以此命名。
    Canny 算法的步骤:
    1. 使用滤波器卷积降噪      
    2. 使用Sobel导数计算梯度幅值和方向      
    3. 非极大值抑制 + 滞后阈值   
    在正式处理前,用高斯滤平滑波器对图像做滤波降噪的操作,避免噪声点的干扰,但在OpenCV的canny源码中,没有进行高斯滤波,需要使用者自行滤波;有些资料将非极大值抑制和滞后阈值视为两个步骤也是可行的,但是在源码中非极大值抑制 和滞后阈值是同时进行的。

canny源码的位置:\opencv\sources\modules\imgproc\src\canny.cpp
参考了网上许多资料,有不足之处请指正,谢谢。

[cpp]  view plain  copy
  1. /*M/// 
  2. // 
  3. //  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. 
  4. // 
  5. //  By downloading, copying, installing or using the software you agree to this license. 
  6. //  If you do not agree to this license, do not download, install, 
  7. //  copy or use the software. 
  8. // 
  9. // 
  10. //                        Intel License Agreement 
  11. //                For Open Source Computer Vision Library 
  12. // 
  13. // Copyright (C) 2000, Intel Corporation, all rights reserved. 
  14. // Third party copyrights are property of their respective owners. 
  15. // 
  16. // Redistribution and use in source and binary forms, with or without modification, 
  17. // are permitted provided that the following conditions are met: 
  18. // 
  19. //   * Redistribution's of source code must retain the above copyright notice, 
  20. //     this list of conditions and the following disclaimer. 
  21. // 
  22. //   * Redistribution's in binary form must reproduce the above copyright notice, 
  23. //     this list of conditions and the following disclaimer in the documentation 
  24. //     and/or other materials provided with the distribution. 
  25. // 
  26. //   * The name of Intel Corporation may not be used to endorse or promote products 
  27. //     derived from this software without specific prior written permission. 
  28. // 
  29. // This software is provided by the copyright holders and contributors "as is" and 
  30. // any express or implied warranties, including, but not limited to, the implied 
  31. // warranties of merchantability and fitness for a particular purpose are disclaimed. 
  32. // In no event shall the Intel Corporation or contributors be liable for any direct, 
  33. // indirect, incidental, special, exemplary, or consequential damages 
  34. // (including, but not limited to, procurement of substitute goods or services; 
  35. // loss of use, data, or profits; or business interruption) however caused 
  36. // and on any theory of liability, whether in contract, strict liability, 
  37. // or tort (including negligence or otherwise) arising in any way out of 
  38. // the use of this software, even if advised of the possibility of such damage. 
  39. // 
  40. //M*/  
  41.   
  42. #include "precomp.hpp"  
  43.   
  44. /* 
  45. #if defined (HAVE_IPP) && (IPP_VERSION_MAJOR >= 7) 
  46. #define USE_IPP_CANNY 1 
  47. #else 
  48. #undef USE_IPP_CANNY 
  49. #endif 
  50. */  
  51. #ifdef USE_IPP_CANNY  
  52. namespace cv  
  53. {  
  54. static bool ippCanny(const Mat& _src, Mat& _dst, float low,  float high)  
  55. {  
  56.     int size = 0, size1 = 0;  
  57.     IppiSize roi = { _src.cols, _src.rows };  
  58.   
  59.     ippiFilterSobelNegVertGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size);  
  60.     ippiFilterSobelHorizGetBufferSize_8u16s_C1R(roi, ippMskSize3x3, &size1);  
  61.     size = std::max(size, size1);  
  62.     ippiCannyGetSize(roi, &size1);  
  63.     size = std::max(size, size1);  
  64.   
  65.     AutoBuffer<uchar> buf(size + 64);  
  66.     uchar* buffer = alignPtr((uchar*)buf, 32);  
  67.   
  68.     Mat _dx(_src.rows, _src.cols, CV_16S);  
  69.     if( ippiFilterSobelNegVertBorder_8u16s_C1R(_src.data, (int)_src.step,  
  70.                     _dx.ptr<short>(), (int)_dx.step, roi,  
  71.                     ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 )  
  72.         return false;  
  73.   
  74.     Mat _dy(_src.rows, _src.cols, CV_16S);  
  75.     if( ippiFilterSobelHorizBorder_8u16s_C1R(_src.data, (int)_src.step,  
  76.                     _dy.ptr<short>(), (int)_dy.step, roi,  
  77.                     ippMskSize3x3, ippBorderRepl, 0, buffer) < 0 )  
  78.         return false;  
  79.   
  80.     if( ippiCanny_16s8u_C1R(_dx.ptr<short>(), (int)_dx.step,  
  81.                             _dy.ptr<short>(), (int)_dy.step,  
  82.                             _dst.data, (int)_dst.step, roi, low, high, buffer) < 0 )  
  83.         return false;  
  84.     return true;  
  85. }  
  86. }  
  87. #endif  
  88.   
  89. void cv::Canny( InputArray _src, OutputArray _dst,  
  90.                 double low_thresh, double high_thresh,  
  91.                 int aperture_size, bool L2gradient )  
  92. {  
  93.     Mat src = _src.getMat();           //输入图像,必须为单通道灰度图  
  94.     CV_Assert( src.depth() == CV_8U ); // 8位无符号  
  95.   
  96.     _dst.create(src.size(), CV_8U);    //根据src的大小构造目标矩阵dst  
  97.     Mat dst = _dst.getMat();           //输出图像,为单通道黑白图  
  98.       
  99.       
  100.     // low_thresh 表示低阈值, high_thresh表示高阈值  
  101.     // aperture_size 表示算子大小,默认为3  
  102.     // L2gradient计算梯度幅值的标识,默认为false  
  103.   
  104.     // 如果L2gradient为false 并且 apeture_size的值为-1(-1的二进制标识为:1111 1111)  
  105.     // L2gradient为false 则计算sobel导数时,用G = |Gx|+|Gy|  
  106.     // L2gradient为true  则计算sobel导数时,用G = Math.sqrt((Gx)^2 + (Gy)^2) 根号下 开平方  
  107.       
  108.     if (!L2gradient && (aperture_size & CV_CANNY_L2_GRADIENT) == CV_CANNY_L2_GRADIENT)  
  109.     {  
  110.     // CV_CANNY_L2_GRADIENT 宏定义其值为: Value = (1<<31) 1左移31位  即2147483648  
  111.         //backward compatibility  
  112.           
  113.     // ~标识按位取反  
  114.         aperture_size &= ~CV_CANNY_L2_GRADIENT;//相当于取绝对值  
  115.     L2gradient = true;  
  116.     }  
  117.   
  118.   
  119.     // 判别条件1:aperture_size是奇数  
  120.     // 判别条件2: aperture_size的范围应当是[3,7], 默认值3   
  121.     if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7)))  
  122.         CV_Error(CV_StsBadFlag, "");  // 报错  
  123.   
  124.     if (low_thresh > high_thresh)           // 如果低阈值 > 高阈值  
  125.         std::swap(low_thresh, high_thresh); // 则交换低阈值和高阈值  
  126.   
  127. #ifdef HAVE_TEGRA_OPTIMIZATION  
  128.     if (tegra::canny(src, dst, low_thresh, high_thresh, aperture_size, L2gradient))  
  129.         return;  
  130. #endif  
  131.   
  132. #ifdef USE_IPP_CANNY  
  133.     if( aperture_size == 3 && !L2gradient &&  
  134.         ippCanny(src, dst, (float)low_thresh, (float)high_thresh) )  
  135.         return;  
  136. #endif  
  137.   
  138.     const int cn = src.channels();           // cn为输入图像的通道数  
  139.     Mat dx(src.rows, src.cols, CV_16SC(cn)); // 存储 x方向 方向导数的矩阵,CV_16SC(cn):16位有符号cn通道  
  140.     Mat dy(src.rows, src.cols, CV_16SC(cn)); // 存储 y方向 方向导数的矩阵 ......  
  141.   
  142.     /*Sobel参数说明:(参考cvSobel) 
  143.       cvSobel( 
  144.             const  CvArr* src,                // 输入图像 
  145.             CvArr*        dst,                // 输入图像 
  146.             int           xorder,            // x方向求导的阶数 
  147.             int           yorder,         // y方向求导的阶数 
  148.             int           aperture_size = 3   // 滤波器的宽和高 必须是奇数 
  149.       ); 
  150.     */  
  151.   
  152.     // BORDER_REPLICATE 表示当卷积点在图像的边界时,原始图像边缘的像素会被复制,并用复制的像素扩展原始图的尺寸  
  153.     // 计算x方向的sobel方向导数,计算结果存在dx中  
  154.     Sobel(src, dx, CV_16S, 1, 0, aperture_size, 1, 0, cv::BORDER_REPLICATE);   
  155.     // 计算y方向的sobel方向导数,计算结果存在dy中  
  156.     Sobel(src, dy, CV_16S, 0, 1, aperture_size, 1, 0, cv::BORDER_REPLICATE);   
  157.   
  158.     //L2gradient为true时, 表示需要根号下开平方运算,阈值也需要平方  
  159.     if (L2gradient)  
  160.     {  
  161.         low_thresh = std::min(32767.0, low_thresh);  
  162.         high_thresh = std::min(32767.0, high_thresh);  
  163.   
  164.         if (low_thresh > 0) low_thresh *= low_thresh;    //低阈值平方运算  
  165.         if (high_thresh > 0) high_thresh *= high_thresh; //高阈值平方运算  
  166.     }  
  167.   
  168.     int low = cvFloor(low_thresh);   // cvFloor返回不大于参数的最大整数值, 相当于取整  
  169.     int high = cvFloor(high_thresh);  
  170.   
  171.     // ptrdiff_t 是C/C++标准库中定义的一个数据类型,signed类型,通常用于存储两个指针的差(距离),可以是负数  
  172.     // mapstep 用于存放  
  173.     ptrdiff_t mapstep = src.cols + 2; // +2 表示左右各扩展一条边  
  174.       
  175.     // AutoBuffer<uchar> 会自动分配一定大小的内存,并且指定内存中的数据类型是uchar  
  176.     // 列数 +2 表示图像左右各自扩展一条边 (用于复制边缘像素,扩大原始图像)  
  177.     // 行数 +2 表示图像上下各自扩展一条边  
  178.     AutoBuffer<uchar> buffer((src.cols+2)*(src.rows+2) + cn * mapstep * 3 * sizeof(int));  
  179.   
  180.     int* mag_buf[3];  //定义一个大小为3的int型指针数组,  
  181.     mag_buf[0] = (int*)(uchar*)buffer;  
  182.     mag_buf[1] = mag_buf[0] + mapstep*cn;  
  183.     mag_buf[2] = mag_buf[1] + mapstep*cn;  
  184.     memset(mag_buf[0], 0, /* cn* */mapstep*sizeof(int));  
  185.   
  186.     uchar* map = (uchar*)(mag_buf[2] + mapstep*cn);  
  187.     memset(map, 1, mapstep);  
  188.     memset(map + mapstep*(src.rows + 1), 1, mapstep);  
  189.   
  190.     int maxsize = std::max(1 << 10, src.cols * src.rows / 10); // 2的10次幂 1024  
  191.     std::vector<uchar*> stack(maxsize); // 定义指针类型向量,用于存地址  
  192.     uchar **stack_top = &stack[0];      // 栈顶指针(指向指针的指针),指向stack[0], stack[0]也是一个指针  
  193.     uchar **stack_bottom = &stack[0];   // 栈底指针 ,初始时 栈底指针 == 栈顶指针  
  194.   
  195.   
  196.     // 梯度的方向被近似到四个角度之一 (0, 45, 90, 135 四选一)  
  197.     /* sector numbers 
  198.        (Top-Left Origin) 
  199.  
  200.         1   2   3 
  201.          *  *  * 
  202.           * * * 
  203.         0*******0 
  204.           * * * 
  205.          *  *  * 
  206.         3   2   1 
  207.     */  
  208.       
  209.   
  210.     // define 定义函数块  
  211.     // CANNY_PUSH(d) 是入栈函数, 参数d表示地址指针,让该指针指向的内容为2(int型强制转换成uchar型),并入栈,栈顶指针+1  
  212.     // 2表示 像素属于某条边缘 可以看下方的注释  
  213.     // CANNY_POP(d) 是出栈函数, 栈顶指针-1,然后将-1后的栈顶指针指向的值,赋给d  
  214.     #define CANNY_PUSH(d)    *(d) = uchar(2), *stack_top++ = (d)  
  215.     #define CANNY_POP(d)     (d) = *--stack_top  
  216.   
  217.     // calculate magnitude and angle of gradient, perform non-maxima suppression.  
  218.     // fill the map with one of the following values:  
  219.     // 0 - the pixel might belong to an edge 可能属于边缘  
  220.     // 1 - the pixel can not belong to an edge 不属于边缘  
  221.     // 2 - the pixel does belong to an edge 一定属于边缘  
  222.       
  223.     // for内进行非极大值抑制 + 滞后阈值处理  
  224.     for (int i = 0; i <= src.rows; i++) // i 表示第i行  
  225.     {  
  226.   
  227.     // i == 0 时,_norm 指向 mag_buf[1]  
  228.     // i > 0 时, _norm 指向 mag_buf[2]  
  229.     // +1 表示跳过每行的第一个元素,因为是后扩展的边,不可能是边缘  
  230.     int* _norm = mag_buf[(i > 0) + 1] + 1;   
  231.           
  232.         if (i < src.rows)  
  233.         {  
  234.             short* _dx = dx.ptr<short>(i); // _dx指向dx矩阵的第i行  
  235.             short* _dy = dy.ptr<short>(i); // _dy指向dy矩阵的第i行  
  236.   
  237.             if (!L2gradient) // 如果 L2gradient为false  
  238.             {  
  239.                 for (int j = 0; j < src.cols*cn; j++) // 对第i行里的每一个值都进行计算  
  240.                     _norm[j] = std::abs(int(_dx[j])) + std::abs(int(_dy[j])); // 用||+||计算  
  241.             }  
  242.             else  
  243.             {  
  244.                 for (int j = 0; j < src.cols*cn; j++)  
  245.             //用平方计算,当 L2gradient为 true时,高低阈值都被平方了,所以此处_norm[j]无需开平方  
  246.                     _norm[j] = int(_dx[j])*_dx[j] + int(_dy[j])*_dy[j]; //  
  247.             }  
  248.   
  249.             if (cn > 1) // 如果不是单通道  
  250.             {  
  251.                 for(int j = 0, jn = 0; j < src.cols; ++j, jn += cn)  
  252.                 {  
  253.                     int maxIdx = jn;  
  254.                     for(int k = 1; k < cn; ++k)  
  255.                         if(_norm[jn + k] > _norm[maxIdx]) maxIdx = jn + k;  
  256.                     _norm[j] = _norm[maxIdx];  
  257.                     _dx[j] = _dx[maxIdx];  
  258.                     _dy[j] = _dy[maxIdx];  
  259.                 }  
  260.             }  
  261.             _norm[-1] = _norm[src.cols] = 0; // 最后一列和第一列的梯度幅值设置为0  
  262.         }  
  263.         // 当i == src.rows (最后一行)时,申请空间并且每个空间的值初始化为0, 存储在mag_buf[2]中  
  264.         else  
  265.             memset(_norm-1, 0, /* cn* */mapstep*sizeof(int));   
  266.   
  267.         // at the very beginning we do not have a complete ring  
  268.         // buffer of 3 magnitude rows for non-maxima suppression  
  269.         if (i == 0)  
  270.             continue;  
  271.   
  272.         uchar* _map = map + mapstep*i + 1; // _map 指向第 i+1 行,+1表示跳过该行第一个元素  
  273.         _map[-1] = _map[src.cols] = 1; // 第一列和最后一列不是边缘,所以设置为1  
  274.   
  275.         int* _mag = mag_buf[1] + 1; // take the central row 中间那一行  
  276.         ptrdiff_t magstep1 = mag_buf[2] - mag_buf[1];  
  277.         ptrdiff_t magstep2 = mag_buf[0] - mag_buf[1];  
  278.   
  279.         const short* _x = dx.ptr<short>(i-1);  
  280.         const short* _y = dy.ptr<short>(i-1);  
  281.   
  282.       // 如果栈的大小不够,则重新为栈分配内存(相当于扩大容量)  
  283.         if ((stack_top - stack_bottom) + src.cols > maxsize)  
  284.         {  
  285.             int sz = (int)(stack_top - stack_bottom);  
  286.             maxsize = maxsize * 3/2;  
  287.             stack.resize(maxsize);  
  288.             stack_bottom = &stack[0];  
  289.             stack_top = stack_bottom + sz;  
  290.         }  
  291.   
  292.         int prev_flag = 0; //前一个像素点 0:非边缘点 ;1:边缘点  
  293.         for (int j = 0; j < src.cols; j++) // 第 j 列  
  294.         {  
  295.             #define CANNY_SHIFT 15  
  296.             // tan22.5  
  297.             const int TG22 = (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5);  
  298.   
  299.             int m = _mag[j];  
  300.   
  301.             if (m > low) // 如果大于低阈值  
  302.             {  
  303.                 int xs = _x[j];    // dx中 第i-1行 第j列  
  304.                 int ys = _y[j];    // dy中 第i-1行 第j列  
  305.                 int x = std::abs(xs);  
  306.                 int y = std::abs(ys) << CANNY_SHIFT;  
  307.   
  308.                 int tg22x = x * TG22;  
  309.   
  310.                 if (y < tg22x) //角度小于22.5 用区间表示:[0, 22.5)  
  311.                 {  
  312.               // 与左右两点的梯度幅值比较,如果比左右都大  
  313.               //(此时当前点是左右邻域内的极大值),则 goto __ocv_canny_push 执行入栈操作  
  314.                     if (m > _mag[j-1] && m >= _mag[j+1]) goto __ocv_canny_push;  
  315.                 }  
  316.                 else //角度大于22.5  
  317.                 {  
  318.                     int tg67x = tg22x + (x << (CANNY_SHIFT+1));  
  319.                     if (y > tg67x) //(67.5, 90)  
  320.                     {  
  321.                         //与上下两点的梯度幅值比较,如果比上下都大  
  322.                         //(此时当前点是左右邻域内的极大值),则 goto __ocv_canny_push 执行入栈操作  
  323.                         if (m > _mag[j+magstep2] && m >= _mag[j+magstep1]) goto __ocv_canny_push;  
  324.                     }  
  325.                     else //[22.5, 67.5]  
  326.                     {  
  327.                         // ^ 按位异或 如果xs与ys异号 则取-1 否则取1  
  328.                         int s = (xs ^ ys) < 0 ? -1 : 1;  
  329.                         //比较对角线邻域  
  330.                         if (m > _mag[j+magstep2-s] && m > _mag[j+magstep1+s]) goto __ocv_canny_push;  
  331.                     }  
  332.                 }  
  333.             }  
  334.               
  335.           //比当前的梯度幅值低阈值还低,直接被确定为非边缘  
  336.             prev_flag = 0;  
  337.             _map[j] = uchar(1); // 1 表示不属于边缘  
  338.               
  339.             continue;  
  340. __ocv_canny_push:  
  341.         // 前一个点不是边缘点 并且 当前点的幅值大于高阈值(大于高阈值被视为边缘像素) 并且 正上方的点不是边缘点  
  342.             if (!prev_flag && m > high && _map[j-mapstep] != 2)  
  343.             {  
  344.                 //将当前点的地址入栈,入栈前,会将该点地址指向的值设置为2(查看上面的宏定义函数块里)  
  345.                 CANNY_PUSH(_map + j);   
  346.                 prev_flag = 1;  
  347.             }  
  348.             else  
  349.                 _map[j] = 0;  
  350.         }  
  351.   
  352.         // scroll the ring buffer  
  353.         // 交换指针指向的位置,向上覆盖,把mag_[1]的内容覆盖到mag_buf[0]上  
  354.         // 把mag_[2]的内容覆盖到mag_buf[1]上  
  355.     // 最后 让mag_buf[2]指向_mag指向的那一行  
  356.         _mag = mag_buf[0];  
  357.         mag_buf[0] = mag_buf[1];  
  358.         mag_buf[1] = mag_buf[2];  
  359.         mag_buf[2] = _mag;  
  360.     }  
  361.   
  362.       
  363.     // now track the edges (hysteresis thresholding)  
  364.     // 通过上面的for循环,确定了各个邻域内的极大值点为边缘点(标记为2)  
  365.     // 现在,在这些边缘点的8邻域内(上下左右+4个对角),将可能的边缘点(标记为0)确定为边缘  
  366.     while (stack_top > stack_bottom)  
  367.     {  
  368.         uchar* m;  
  369.         if ((stack_top - stack_bottom) + 8 > maxsize)  
  370.         {  
  371.             int sz = (int)(stack_top - stack_bottom);  
  372.             maxsize = maxsize * 3/2;  
  373.             stack.resize(maxsize);  
  374.             stack_bottom = &stack[0];  
  375.             stack_top = stack_bottom + sz;  
  376.         }  
  377.   
  378.         CANNY_POP(m); // 出栈  
  379.   
  380.         if (!m[-1])         CANNY_PUSH(m - 1);  
  381.         if (!m[1])          CANNY_PUSH(m + 1);  
  382.         if (!m[-mapstep-1]) CANNY_PUSH(m - mapstep - 1);  
  383.         if (!m[-mapstep])   CANNY_PUSH(m - mapstep);  
  384.         if (!m[-mapstep+1]) CANNY_PUSH(m - mapstep + 1);  
  385.         if (!m[mapstep-1])  CANNY_PUSH(m + mapstep - 1);  
  386.         if (!m[mapstep])    CANNY_PUSH(m + mapstep);  
  387.         if (!m[mapstep+1])  CANNY_PUSH(m + mapstep + 1);  
  388.     }  
  389.   
  390.     // the final pass, form the final image  
  391.     // 生成边缘图  
  392.     const uchar* pmap = map + mapstep + 1;  
  393.     uchar* pdst = dst.ptr();  
  394.     for (int i = 0; i < src.rows; i++, pmap += mapstep, pdst += dst.step)  
  395.     {  
  396.         for (int j = 0; j < src.cols; j++)  
  397.             pdst[j] = (uchar)-(pmap[j] >> 1);  
  398.     }  
  399. }  
  400.   
  401. void cvCanny( const CvArr* image, CvArr* edges, double threshold1,  
  402.               double threshold2, int aperture_size )  
  403. {  
  404.     cv::Mat src = cv::cvarrToMat(image), dst = cv::cvarrToMat(edges);  
  405.     CV_Assert( src.size == dst.size && src.depth() == CV_8U && dst.type() == CV_8U );  
  406.   
  407.     cv::Canny(src, dst, threshold1, threshold2, aperture_size & 255,  
  408.               (aperture_size & CV_CANNY_L2_GRADIENT) != 0);  
  409. }  
  410.   
  411. /* End of file. */  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值