Python开发爬虫爬取百度百科词条信息(源码下载)

关注公众号“码农帮派”,查看更多系列技术文章:

 

下面使用Python开发一个网页爬虫,爬取百度百科词条信息,整个程序涉及到url管理器,html下载器,html解析器,html显示以及调度程序:

程序结构:

spider_main.py:爬虫的调度程序

url_manager.py:爬虫URL管理器,维护两个set,一个为将要爬取信息的url,一个为已经爬取过的url

html_downloader.py:html下载器

html_parser.py:html内容解析器

html_outputer.py:结果收集和展示

 

【爬虫的流程图】

 

spider_main.py [调度程序]:

 

# coding=utf-8
"""
这是调度程序,爬取步骤:
(1)调用url管理器获取需要爬取的url;
(2)通过html下载器下载网页;
(3)由html解析器解析获得url网页中需要的信息和新的url集合,以便后续爬取;
(4)收集爬取到的信息,生成html文件,进行爬取结果展示
"""
import url_manager
import html_downloader
import html_parser
import html_outputer

class SpiderMain(object):

    def __init__(self):
        self.urls = url_manager.UrlManager() # Url管理器
        self.downloader = html_downloader.HtmlDownloader()
        self.parser = html_parser.HtmlParser()
        self.outputer = html_outputer.HtmlOutputer()

    def craw(self, root_url):
        count = 1
        self.urls.add_new_url(root_url)

        while self.urls.has_new_url():
            try: # 由于有些url已经失效,进行下载会异常,故而进行异常捕获
                # 从url管理器中获取一个新的,待爬取的url
                new_url = self.urls.get_new_url()
                print "crawing {0} : {1}".format(count, new_url)
                # 调用html下载器,下载new_url对应的html的内容
                html_doc = self.downloader.download(new_url)
                # 调用html解析器,解析html内容,获取到网页内容中新的url和需要的信息
                new_urls, new_data = self.parser.parse(new_url, html_doc)
                # 将新的url存储到url管理器中
                self.urls.add_new_urls(new_urls)
                # 由outputer收集本次爬取,解析得到的网页信息
                self.outputer.collect_data(new_data)

                if count == 50: # 爬取100条数据即结果爬取
                    break

                count += 1
            except:
                print '--- craw falled! ---'

        print 'craw finished!'
        # 爬取完毕,调用outputer显示爬取的结果
        self.outputer.output_html()


# 编写模块的主入口
if __name__ == '__main__':
    # 爬虫开始爬取的根url,为百度百科中关于Python解释的网页链接
    root_url = 'http://baike.baidu.com/view/21087.htm'
    obj_spider = SpiderMain() # 实例化一个爬虫对象
    obj_spider.craw(root_url) # 启动爬取信息

 

 

 

url_manager.py  [URL管理器]:

 

# coding=utf-8

class UrlManager(object):

    def __init__(self):
        self.new_urls = set()
        self.old_urls = set()

    def add_new_url(self, new_url):
        if new_url is None:
            return

        if new_url not in self.new_urls and new_url not in self.old_urls:
            self.new_urls.add(new_url)

    def has_new_url(self):
        return len(self.new_urls) != 0

    def get_new_url(self):
        new_url = self.new_urls.pop()
        self.old_urls.add(new_url)
        return new_url

    def add_new_urls(self, urls):
        if urls is None:
            return

        for url in urls:
            self.add_new_url(url)

 

 

 

html_downloader.py [HTML内容下载器]:

 

# coding=utf-8
import urllib2

class HtmlDownloader(object):

    def download(self, url):
        if url is None:
            return

        response = urllib2.urlopen(url)

        if response.getcode() != 200:
            return None

        return response.read().decode('utf-8')

 

 

 

html_parser.py  [HTML解析器]:

 

# coding=utf-8
import re
from bs4 import BeautifulSoup
import urlparse

class HtmlParser(object):

    def parse(self, page_url, html_doc):
        if page_url is None or html_doc is None:
            return

        soup = BeautifulSoup(html_doc, 'html.parser', from_encoding='utf8')

        # 获得本网页中新的url
        new_urls = self._get_new_urls(page_url, soup)
        # 获得本网页中需要爬取得到的信息
        new_data = self._get_new_data(page_url, soup)

        return new_urls, new_data

    def _get_new_urls(self, page_url, soup):
        new_urls = set()

        # 要匹配的节点<a target="_blank" href="/view/2561555.htm">计算机程序设计语言</a>
        pat = re.compile(r"/view/\d*\.htm")
        links = soup.find_all('a', href=pat)

        for link in links:
            new_url = link['href'] # 获得节点的href属性值, /view/2561555.htm
            new_full_url = urlparse.urljoin(page_url, new_url) #拼接成完整的url
            new_urls.add(new_full_url)

        return new_urls

    def _get_new_data(self, page_url, soup):

        new_data = {}
        new_data['url'] = page_url

        # 匹配<dd class="lemmaWgt-lemmaTitle-title"><h1>Python</h1>节点,获得title
        title_node = soup.find('dd', class_='lemmaWgt-lemmaTitle-title').find('h1')
        new_data['title'] = title_node.get_text() # 获得title_node的文字信息

        # 匹配<div class="lemma-summary" label-module="lemmaSummary">节点,获得summary
        summary_node = soup.find('div', class_='lemma-summary')
        new_data['summary'] = summary_node.get_text() # 获得summary_node的文字信息

        return new_data

 

 

 

html_outputer.py  [结果收集和显示]:

 

#coding=utf-8

class HtmlOutputer(object):

    def __init__(self):
        self.datas = []


    def collect_data(self, new_data):
        if new_data is None:
            return

        self.datas.append(new_data)


    def output_html(self):

        fout = open('output.html', 'w')
        fout.write('<html><head><meta charset="UTF-8"></head>')
        fout.write('<body>')

        fout.write('<table border="1" cellspacing="0" cellpadding="0">')
        for data in self.datas:
            fout.write('<tr>')
            fout.write('<th>{0}</th>'.format(data['title'].encode('utf-8')))
            fout.write('<td>{0}\n{1}</td>'.format(data['url'].encode('utf-8'), data['summary'].encode('utf-8')))
            fout.write('</tr>')

        fout.write('</table>')

        fout.write('</body>')
        fout.close()

 

运行脚本文件,出现下面的打印:

 

等待输出:"craw finished!" ,抓取完毕,在当目录下生成了一个output.html的文件:

output.html

 

【CSDN源码下载地址】

http://download.csdn.net/detail/tianmaxingkong_/9667206

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值