隐式马尔科夫链与维特比算法

1. 隐式马尔科夫链: 马尔科夫链是一系列的状态转换,设为x1...xn,其中xn至于xn-1相关,假设xi 会以p(i)的概率产生yi, 如下图所示:

 

观察到的是Y的序列,由于X序列不可见,是隐式的,因此称为隐式马尔科夫链

 

真实系统中,x与y之间有可能不是一一对应的关系,但总有一个从X到Y的概率

 

现在我们观察到了一个Y的序列,要计算如下两件事情:

1. Y这个序列出现的概率多大?

2. 要出现Y这个序列,则概率最大的X序列是什么?

 

第一个问题:

假设X序列初始状态是Xi的概率为Ii, P(Xi|Xj) = Aij, P(Yi|Xi) = Bi

则Y序列的初始状态是Yi的概率为:P(Yi) =  Ii * Bi

P(Yi + 1) = sum(P(Xi + 1) | Xi) * Bi + 1

 

即,因此要计算序列Y1...Yn的概率,需要计算P(Xn | Y1...Yn-1),计算过程如下:

观察到事实Y1, 计算从状态Xi到所有其他状态在Xj这个事实下的转换概率,计算出在Y1这个事实下,所有X1...Xn的出现概率,依次如此计算,最后计算出Y1...Yn的概率

 

第二个问题:

由于马尔科夫链的关系,假设我们已经求出对应这Y1...Yi的最大概率X序列,那么对Yi +1, 我们只需计算Yi 到 Yi + 1的最大概率序列即可,即是从状态1到状态2的最大概率与状态2到状态3的最大概率无关。

 

举例如下:

例子来自于wiki:http://en.wikipedia.org/wiki/Viterbi_algorithm

 

网上还有一篇非常详细地介绍hmm的文章:

http://jedlik.phy.bme.hu/~gerjanos/HMM/node2.html#SECTION00200000000000000000

阅读更多
想对作者说点什么? 我来说一句

隐式马尔可夫链

kidding_flesh kidding_flesh

2014-10-30 17:09:09

阅读数:110

隐式马尔科夫与R语言

2013年10月16日 413KB 下载

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭