【机器学习基础】概率分布之变量

本文主要介绍了机器学习中的概率分布,包括二元变量的二项分布和多项式变量的多项式分布,以及对应的贝塔分布和狄利克雷分布。通过伯努利分布解释了二项分布的概念,讨论了后验概率分布的共轭性,同时阐述了多项式分布和狄利克雷分布的特性。最后,探讨了贝叶斯学习过程中数据增加对不确定性的影响。
摘要由CSDN通过智能技术生成

本系列为《模式识别与机器学习》的读书笔记。

一,二元变量

1,二项分布

考虑⼀个⼆元随机变量 x ∈ { 0 , 1 } x \in \{0, 1\} x{ 0,1}。 例如, x x x 可能描述了扔硬币的结果, x = 1 x = 1 x=1 表⽰“正⾯”, x = 0 x = 0 x=0 表⽰反⾯。我们可以假设有⼀个损坏的硬币,这枚硬币正⾯朝上的概率未必等于反⾯朝上的概率。 x = 1 x = 1 x=1 的概率被记作参数 μ \mu μ,因此有:
p ( x = 1 ∣ μ ) = μ (2.1) p(x=1|\mu) = \mu\tag{2.1} p(x=1μ)=μ(2.1)
其中 0 ≤ μ ≤ 1 0\le \mu\le 1 0μ1 x x x 的概率分布因此可以写成:
Bern ( x ∣ μ ) = μ x ( 1 − μ ) 1 − x (2.2) \text {Bern}(x|\mu) = \mu^{x}(1-\mu)^{1-x}\tag{2.2} Bern(xμ)=μx(1μ)1x(2.2)
这被叫做伯努利分布Bernoulli distribution)。容易证明,这个分布是归⼀化的,并且均值和⽅差分别为:
E [ x ] = μ (2.3) \mathbb{E}[x] = \mu\tag{2.3} E[x]=μ(2.3)

var [ x ] = μ ( 1 − μ ) (2.4) \text{var}[x] = \mu(1-\mu)\tag{2.4} var[x]=μ(1μ)(2.4)

如图 2.1: ⼆项分布关于 m m m 的函数的直⽅图,其中 N = 10 N = 10 N=10 μ = 0.25 \mu = 0.25 μ=0.25
二项分布
假设我们有⼀个 x x x 的观测值的数据集 D = { x 1 , … , x N } \mathcal{D} = \{x_1 ,\dots, x_N\} D={ x1,,xN}。假设每次观测都是独⽴地从 p ( x ∣ μ ) p(x | \mu) p(xμ) 中抽取的,因此可以构造关于 μ \mu μ 的似然函数:
p ( D ∣ μ ) = ∏ n = 1 N p ( x n ∣ μ ) = ∏ n = 1 N μ x n ( 1 − μ ) 1 − x n (2.5) p(\mathcal{D}|\mu) = \prod_{n=1}^{N}p(x_{n}|\mu) = \prod_{n=1}^{N}\mu^{x_{n}}(1-\mu)^{1-x_{n}}\tag{2.5} p(Dμ)=n=1Np(xnμ)=n=1Nμxn(1μ)1xn(2.5)
其对数似然函数:
ln ⁡ p ( D ∣ μ ) = ∑ n = 1 N ln ⁡ p ( x n ∣ μ ) = ∑ n = 1 N { x n ln ⁡ μ + ( 1 − x n ) ln ⁡ ( 1 − μ ) } (2.6) \ln p(\mathcal{D}|\mu) = \sum_{n=1}^{N}\ln p(x_{n}|\mu) = \sum_{n=1}^{N}\{ x^n \ln \mu + (1-x^n) \ln (1-\mu)\}\tag{2.6} lnp(Dμ)=n=1Nlnp(xnμ)=n=1N{ xnlnμ+(1xn)ln(1μ)}(2.6)
在公式(2.6)中,令 ln ⁡ p ( D ∣ μ ) \ln p(\mathcal{D}|\mu) lnp(Dμ) 关于 μ \mu μ 的导数等于零,就得到了最⼤似然的估计值,也被称为样本均值sample mean):
μ M L = 1 N ∑ n = 1 N x n (2.7) \mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_{n}\tag{2.7} μML=N1n=1Nxn(2.7)
求解给定数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值