三次 Bezier 曲线 bern 基函数的形式

Bezier 曲线的控制多边形有 4 个控制点, P 0 P_0 P0 P 1 P_1 P1 P 2 P_2 P2 P 3 P_3 P3, Bezier 曲线是三次多项式,称为三次 Bezier 曲线,

P ( t ) = ∑ i = 0 3 P i B i , 3 ( t ) = ( 1 − t ) 3 P 0 + 3 t ( 1 − t ) 2 P 1 + 3 t 2 ( 1 − t ) P 2 + t 3 P 3 \begin{equation} P(t) = \sum_{i=0}^{3}P_i B_{i, 3}(t) = (1-t)^3 P_0 + 3t(1-t)^2P_{1} + 3t^2(1-t)P_2 + t^3P_3 \end{equation} P(t)=i=03PiBi,3(t)=(1t)3P0+3t(1t)2P1+3t2(1t)P2+t3P3
B 0 , 3 ( t ) = ( 1 − t ) 3 B 1 , 3 ( t ) = 3 t ( 1 − t ) 2 B 2 , 3 ( t ) = 3 t 2 ( 1 − t ) B 3 , 3 ( t ) = t 3 B_{0, 3}(t) = (1-t)^3 \\ B_{1, 3}(t) = 3t(1-t)^2 \\ B_{2, 3}(t) = 3t^2(1-t) \\ B_{3, 3}(t) = t^3 B0,3(t)=(1t)3B1,3(t)=3t(1t)2B2,3(t)=3t2(1t)B3,3(t)=t3

double step = 0.01;
for (double t = 0.0; t < 1.0; t += step)
{	

	// 计算 基函数
	p.x = 0;
	p.y = 0;

	double B03 = (1 - t) * (1 - t) * (1 - t);
	double B13 = 3 * t * (1 - t) * (1 - t);
	double B23 = 3 * t * t * (1 - t);
	double B33 = t * t * t;

	p.x += B03 * P[0].x + B13 * P[1].x + B23 * P[2].x + B33 * P[3].x;
	p.y += B03 * P[0].y + B13 * P[1].y + B23 * P[2].y + B33 * P[3].y;

	//pDC->LineTo(ROUND(p.x), ROUND(p.y));
}

在这里插入图片描述
参考 《计算几何算法与实现》孔令德

  • 18
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值