openai-GPT模型

在这里插入图片描述
引言
一个对文本有效的抽象方法可以减轻NLP对有监督学习的依赖。目前大多数深度学习方法依靠大量的人工标注信息,这限制了在很多领域的应用。此外,即使在可获得相当大的监督语料情况下,以无监督学习的方式学到的表示也可以提供显着的性能提升。到目前为止,最引人注目的证据是广泛使用预训练词嵌入来提高一系列NLP任务的性能。

结构
OpenAI-GPT提出一种半监督的方式来处理语言理解的任务。使用非监督的预训练和监督方式的微调。模型的目标是学习一个通用的语言表示,可以经过很小的调整就应用在各种任务中。这个模型的设置不需要目标任务和非标注的数据集在同一个领域。模型有两个过程。
使用语言模型学习一个深度模型
随后,使用相应的监督目标将这些参数调整到目标任务
在这里插入图片描述
openai-gpt模型是由12层transformer模块组成的,使用最后的隐藏层来做不同的任务。在论文中主要是如下的任务:
文本分类,关系判断,相似性分析,阅读理解。
在这里插入图片描述
训练
无监督:
通过前k-1个词预测第k个词,从前往后,不断前进,属于单向的预测。此处记整个无监督训练的任务为L1。
在这里插入图片描述
输入的是词向量+位置向量,通过12层的transformer模块,在通过一个全连接+softmax预测第k个词。

在这里插入图片描述
有监督:
12层transformer输出的隐藏状态,经过一个全连接+softmax来预测标签y,记有监督的任务为L2。将L1与L2联合训练,如下图所示:
(将语言模型作为微调(fine-tuning)的辅助目标有助于学习NLP任务,所以最后可以加权重组合起来,得到最新的目标函数)
在这里插入图片描述
评估
在这里插入图片描述
测评数据如上表所示。模型在12个数据集上取得了9个最好的结果,分别如下:
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值