1.tensorflow2.X极简安装(GPU版本,2.0~2.3)
注意: 只支持英伟达显卡,此安装基于anaconda(先自行下载安装即可)
(1)新建TF2.0 GPU环境(使用conda 新建环境指令 python==3.6表示在新建环境时同时python3.6)可以更换想要使用的python版本。
conda create -n tensorflow python=3.6
当弹出 :Proceed ([y]/n)? 输入y回车
完成后就可以进入此环境
(2)进入tensorflow环境
conda activate tensorflow
(3)安装GPU版本支持,拥有Nvidia的GPU的windows一般都有默认驱动的,只需要安装cudatoolkit 与 cudnn包就可以了,要注意一点需要安装cudatoolkit 10.0 版本,注意一点,如果系统的cudatoolkit小于10.0需要更新一下至10.0(注意cuda版本与tensorflow版本的对应情况)
conda install cudatoolkit=10.0 cudnn
注意:10.0支持tensorflow2.0,10.1支持tensorflow2.1、2.2、2.3
(4)安装TF2.0 GPU版本(后面的 -i 表示从国内清华源下载,速度比默认源快很多,可切换豆瓣,阿里等镜像源资源)
pip install tensorflow-gpu==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple
(5)测试安装
import tensorflow as tf
version = tf.__version__
gpu_ok = tf.test.is_gpu_available()
print("tf version:",version,"\nuse GPU",gpu_ok)
可以选择在anaconda中的jupyter notebook中测试,若显示“GPU True”字样,则说明安装成功。
2.pytorch在线安装
(1)新建pytorch GPU环境(使用conda 新建环境指令 python==3.6表示在新建环境时同时python3.6)可以更换想要使用的python版本。
conda create -n pytorch python=3.6
当弹出 :Proceed ([y]/n)? 输入y回车
完成后就可以进入此环境
(2)进入pytorch环境
conda activate pytorch
(3)安装GPU版本支持,拥有Nvidia的GPU的windows一般都有默认驱动的,只需要安装cudatoolkit 与 cudnn包就可以了,要注意一点需要安装cudatoolkit 10.0 版本,注意一点,如果系统的cudatoolkit小于10.0需要更新一下至10.0(注意cuda版本与pytorch版本的对应情况)
conda install cudatoolkit=10.0 cudnn
(4)安装pytorch
网址:https://pytorch.org/get-started/previous-versions/
在上述网址中选择想要安装的版本,复制代码命令行运行即可
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch