windows中tensorflow2.x和pytorch在线极简安装

1.tensorflow2.X极简安装(GPU版本,2.0~2.3)
注意: 只支持英伟达显卡,此安装基于anaconda(先自行下载安装即可)
(1)新建TF2.0 GPU环境(使用conda 新建环境指令 python==3.6表示在新建环境时同时python3.6)可以更换想要使用的python版本。

conda create -n tensorflow python=3.6

当弹出 :Proceed ([y]/n)? 输入y回车
完成后就可以进入此环境
(2)进入tensorflow环境

conda activate tensorflow

(3)安装GPU版本支持,拥有Nvidia的GPU的windows一般都有默认驱动的,只需要安装cudatoolkit 与 cudnn包就可以了,要注意一点需要安装cudatoolkit 10.0 版本,注意一点,如果系统的cudatoolkit小于10.0需要更新一下至10.0(注意cuda版本与tensorflow版本的对应情况)

conda install cudatoolkit=10.0 cudnn

注意:10.0支持tensorflow2.0,10.1支持tensorflow2.1、2.2、2.3
(4)安装TF2.0 GPU版本(后面的 -i 表示从国内清华源下载,速度比默认源快很多,可切换豆瓣,阿里等镜像源资源)

pip install tensorflow-gpu==2.0.0 -i https://pypi.tuna.tsinghua.edu.cn/simple

(5)测试安装

import tensorflow as tf
version = tf.__version__
gpu_ok = tf.test.is_gpu_available()
print("tf version:",version,"\nuse GPU",gpu_ok)

可以选择在anaconda中的jupyter notebook中测试,若显示“GPU True”字样,则说明安装成功。
2.pytorch在线安装
(1)新建pytorch GPU环境(使用conda 新建环境指令 python==3.6表示在新建环境时同时python3.6)可以更换想要使用的python版本。

conda create -n pytorch python=3.6

当弹出 :Proceed ([y]/n)? 输入y回车
完成后就可以进入此环境
(2)进入pytorch环境

conda activate pytorch

(3)安装GPU版本支持,拥有Nvidia的GPU的windows一般都有默认驱动的,只需要安装cudatoolkit 与 cudnn包就可以了,要注意一点需要安装cudatoolkit 10.0 版本,注意一点,如果系统的cudatoolkit小于10.0需要更新一下至10.0(注意cuda版本与pytorch版本的对应情况)

conda install cudatoolkit=10.0 cudnn

(4)安装pytorch
网址:https://pytorch.org/get-started/previous-versions/
在上述网址中选择想要安装的版本,复制代码命令行运行即可
在这里插入图片描述

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.1 -c pytorch
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值