如何理解过拟合=高方差、欠拟合=高偏差

本文深入探讨了过拟合和欠拟合的概念,解释了误差、偏差和方差之间的关系。指出过拟合是由于模型复杂度过高,导致训练模型对测试数据的预测离散度增加,表现为高方差。反之,欠拟合是由于模型复杂度过低,产生高偏差。理解这些概念有助于优化模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

欠拟合=高偏差还好理解一些,一直不太明白过拟合和高方差有什么关系,那么我们首先就要理解各种 ‘差’ 的定义

定义:

我们评价一个模型好不好,是通过测试集的数据来评价的,而不是训练集或者交叉验证集,如果在测试集上预测数据表现得不好,那么我们就说这个训练出来的模型有很大的误差。
那么误差来自于哪里呢?
误差 = 偏差 + 方差
在不写出这个式子时,很多人可能不会察觉误差和偏差有什么区别?因此总是想当然的认为误差和偏差是一个东西,这样就会造成我们无法理解方差是什么?
误差:在测试集上,预测值和实际值之间存在的差距。

 图1
图中红点表示输入一个样本x,其真实的输出值y,即我们希望输出的目标,而蓝点表示我们实际预测出来的输出值,注意,所有蓝点的输入样本都是同一个x,那么为什么会得出不同的预测值呢?因为这里代表的是:我们使用了不同的训练集(从所有样本中选出不同的训练集)得出了不同的参数theta(即N个不同的训练模型),导致最终的预测值有区别。
解释完这些,再定义偏差和方差。
偏差: 偏差是衡量预测值和真实值的关系。即N次预测的平均值(也叫期望值),和实际真实值的差距。所以偏差bias=E(p(x)) - f(x)。
方差: 方差用

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值