欠拟合=高偏差还好理解一些,一直不太明白过拟合和高方差有什么关系,那么我们首先就要理解各种 ‘差’ 的定义
定义:
我们评价一个模型好不好,是通过测试集的数据来评价的,而不是训练集或者交叉验证集,如果在测试集上预测数据表现得不好,那么我们就说这个训练出来的模型有很大的误差。
那么误差来自于哪里呢?
误差 = 偏差 + 方差
在不写出这个式子时,很多人可能不会察觉误差和偏差有什么区别?因此总是想当然的认为误差和偏差是一个东西,这样就会造成我们无法理解方差是什么?
误差:在测试集上,预测值和实际值之间存在的差距。
图中红点表示输入一个样本x,其真实的输出值y,即我们希望输出的目标,而蓝点表示我们实际预测出来的输出值,注意,所有蓝点的输入样本都是同一个x,那么为什么会得出不同的预测值呢?因为这里代表的是:我们使用了不同的训练集(从所有样本中选出不同的训练集)得出了不同的参数theta(即N个不同的训练模型),导致最终的预测值有区别。
解释完这些,再定义偏差和方差。
偏差: 偏差是衡量预测值和真实值的关系。即N次预测的平均值(也叫期望值),和实际真实值的差距。所以偏差bias=E(p(x)) - f(x)。
方差: 方差用