欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!
欠拟合(高偏差)和过拟合(高方差)
在机器学习和统计建模中,平衡偏差和方差对于创建能够准确预测并能很好泛化到未见数据的模型至关重要。让我们深入探讨这些基本概念及其与欠拟合和过拟合的关系。
模型预测不可避免地会涉及一些误差。总预测误差可以分解为三个部分:偏差、方差和不可约误差。公式为:
Error = Bias 2 + Variance + Irreducible Error \text{Error} = \text{Bias}^2 + \text{Variance} + \text{Irreduc