深度学习笔记: 最详尽解释欠拟合(高偏差)和过拟合(高方差)

欢迎收藏Star我的Machine Learning Blog:https://github.com/purepisces/Wenqing-Machine_Learning_Blog。如果收藏star, 有问题可以随时与我交流, 谢谢大家!

欠拟合(高偏差)和过拟合(高方差)

在机器学习和统计建模中,平衡偏差和方差对于创建能够准确预测并能很好泛化到未见数据的模型至关重要。让我们深入探讨这些基本概念及其与欠拟合和过拟合的关系。

模型预测不可避免地会涉及一些误差。总预测误差可以分解为三个部分:偏差、方差和不可约误差。公式为:

Error = Bias 2 + Variance + Irreducible Error \text{Error} = \text{Bias}^2 + \text{Variance} + \text{Irreduc

### 深度学习中的拟合过拟合 #### 定义 在深度学习中,**拟合 (Underfitting)** 是指模型未能充分捕捉到数据中的真实关系或模式[^2]。这通常表现为模型在训练集上的表现较差,即偏差可能的方差。而 **过拟合 (Overfitting)** 则是因为模型过于复杂或者训练时间过长,导致其不仅学到了数据的真实规律还学到了噪声,从而使得模型在测试集上的泛化能力下降[^1]。 #### 区别 两者的主要区别在于它们产生的原因以及对性能的影响: - **拟合** 的主要原因是模型容量不足、特征提取不充分或是训练时间不够[^3]。 - **过拟合** 主要发生在当模型过于复杂时,尤其是在训练样本数量有限的情况下,模型会倾向于记住训练数据而非发现普遍适用的规则。 #### 解决方案 ##### 针对拟合的解决方案 1. 增加模型复杂度:可以尝试增加网络层数或神经元的数量来提升模型表达能力。 2. 提供更多特征:通过引入更多的输入变量或将现有特征进行组合变换等方式增强数据表征力。 3. 调整超参数:适当延长训练周期以让模型有足够的时间去适应数据分布特点。 ##### 针对过拟合的解决方案 1. 数据扩增:通过对已有数据做旋转、缩放等操作生成新的样本来扩充原始数据库大小。 2. 正则化技术应用:L1/L2正则项能够有效抑制权重过大带来的负面影响;Dropout随机失活部分节点防止依赖单一路径预测结果。 3. 早停策略(Early Stopping):监控验证集误差变化趋势,在检测到开始上升前终止迭代过程避免进一步恶化。 ```python from tensorflow.keras import regularizers, layers, models model = models.Sequential() model.add(layers.Dense(64, activation='relu', kernel_regularizer=regularizers.l2(0.001))) model.add(layers.Dropout(0.5)) ``` 上述代码片段展示了如何向Keras模型添加 L2 正则化器及 Dropout 层作为对抗过拟合的技术手段之一。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值