关于tensorboard的显示问题的一个方法

本文介绍了在使用Tensorflow进行深度学习时,如何利用Tensorboard进行可视化,包括数据保存、调用Tensorboard的步骤,以及解决常见问题的方法,如属性错误和找不到可视化文件等。
摘要由CSDN通过智能技术生成

问题的描述:

将tensorflow可视化,绘画出神经网络的流程图,这就是tensorboard的功能。tensorboard就是将tensorflow程序中的保持的tensor数据,绘画在图上。
那么如何应用tensorboard,实现tensorflow的可视化呢?
tensorflow的可视化分为几个步骤?
常见的tensorflow可视化问题如何分析呢?

tensorflow可视化的步骤

1)保存数据
保存数据就是将tensor数据写成“graph”格式的数据,用到的是写文件的函数,
writer=tf.summary.FileWriter(“D://TensorBoard//test”,sess.graph)或者是tf.train.SummaryWriter()或者是tf.summary.create_file_writer()。
为什么这么多?
我看网上也有朋友解释是版本的问题。我之前是按照莫烦的视频,用的是train.SummaryWriter(),然后报错是没有这个属性(attribute),之后换成了sunmmary.FileWriter()就能保存。
括号里面就是保存的路径,注意是“//”来表示等级
2)调用tensorboard
我用的时候pycharm,打开Terminal,它自动就在我这个环境下。然后输入tensorboard --logdir=路径,回车
在给你的网站中打开就好了。浏览器我觉得不影响,360都可以。很多人在这一步就有问题了,打开的浏览器网页没有我们的图。这就是我们要说的几个坑。</

要在TensorBoard显示图片,可以使用SummaryWriter.add_image()方法。这个方法接受三个参数:tag(标签),image_data(图像数据)和global_step(全局步数)。其中,tag是一个用于标识图像的字符串,image_data是一个代表图像的张量或数组,global_step是一个整数,用于标识训练的全局步数。 在示例代码中,使用了PIL库将图像加载为PIL对象,然后将其转为NumPy数组。接着,使用SummaryWriter.add_image()将图像数据添加到TensorBoard的日志中。需要注意的是,传递给add_image()方法的图像数据需要满足HWC(Height-Width-Channel)的数据格式。 为了能够在TensorBoard显示图片,建议使用TensorFlow作为后端。由于Keras隐藏了TensorFlow的图构建方法,你可以通过在Keras模型中使用Callbacks来实现在TensorBoard显示图片。具体做法是在Callbacks中使用TensorBoard方法,例如使用TensorBoard的add_image()方法将图像数据添加到TensorBoard的日志中。 总结起来,要在TensorBoard显示图片,可以使用SummaryWriter.add_image()方法将图像数据添加到TensorBoard的日志中,并使用TensorFlow作为后端来创建Callbacks并将图像数据添加到TensorBoard。<span class="em">1</span><span class="em">2</span> #### 引用[.reference_title] - *1* [利用tensorboard来展示图片的逐步展示](https://blog.csdn.net/weixin_45193103/article/details/123595351)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [Keras使用tensorboard显示训练过程的实例](https://download.csdn.net/download/weixin_38682790/14851353)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值