数论常用内容——整除

说到整除,我们应该先来明确一下整除的定义:

若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说b能整除a),即b∣a,读作“b整除a”或“a能被b整除”。a叫做b的倍数,b叫做a的约数(或因数)。

然后我们来看一下整除的基本性质:

①若a|b,a|c,则a|(b±c)。
②若a|b,则对任意c(c≠0),a|bc。
③对任意非零整数a,±a|a=±1。
④若a|b,b|a,则|a|=|b|。
⑤如果a能被b整除,c是任意整数,那么积ac也能被b整除。
⑥如果a同时被b与c整除,并且b与c互质,那么a一定能被积bc整除,反过来也成立

我们在竞赛中经常会碰到能被xx数整除的问题,如果现场总结规律可能会非常慢,这里我给大家总结了一部分能被xx数整除的数的特征:

1.能被2整除的数:个位上为2的倍数
2.能被4整除的数:个位和十位所组成的两位数能被4整除
3.能被8整除的数:百位、个位、十位所组成的三位数能被8整除(注意顺序)
4.能被5整除的数:个位上为5的倍数
5.能被25整除的数:十位和个位所组成的两位数能被25整除
6.能被125整除的数:百位、十位、个位所组成的数能被125整除
7.能被3整除的数:各个数位上的数字和能被3整除
8.能被9整除的数:各个数位上的数字和能被9整除
9.能被11整除的数:奇数位(从左往右数)上的数字和与偶数位上的数字和的差的绝对值能被11整除
10.能被7整除的数:把个位数字截去,从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除,如果不好判断就递归处理
11.能被13整除的数:把个位数字截去,从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除
12.能被17整除的数:把个位数字截去,从余下的数中,加上个位数的5倍,如果和是17的倍数,则原数能被17整除,或把后三位截去,剩下的数与3倍后三位差的绝对值如果能被17整除,则原数能被17整除
13.能被19整除的数:把个位数字截去,从余下的数中,加上个位数的2倍,如果和是19的倍数,则原数能被19整除,或把后三位截去,剩下的数与7倍后三位的差的绝对值如果能被19整除,则原数能被19整除

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值