卷积神经网络CNN

1.卷积层

cs231n课程中有一张卷积动图,貌似是用d3js 和一个util 画的,我根据cs231n的卷积动图依次截取了18张图,然后用一gif 制图工具制作了一gif 动态卷积图。如下gif 图所示(先相乘再相加)

 其中图像有三个通道,卷积核也有3通道(每一个卷积核)7*7*3的含义(其中7*7代表图像的像素/长宽,3代表R、G、B 三个颜色通道)

两个神经元,即depth=2,意味着有两个滤波器。

数据窗口每次移动两个步长取3*3的局部数据,即stride=2。

zero-padding=1。

中间部分是两个不同的滤波器Filter w0、Filter w1

最右边则是两个不同的输出

注意bias

2. ReLU激励层

 激活函数:ReLU

3.池化pool层

4.卷积神经网络之padding操作

valid

same

5. 全连接层——FC laye

全连接层中,两层之间所有神经元都有权重连接,通常全连接层在卷积神经网络尾部,因为尾部的信息量没有开始那么大。

 

 特点

1. 参数共享

2.多卷积核

上面所述只有100个参数时,表明只有1个10*10的卷积核,显然,特征提取是不充分的,我们可以添加多个卷积核,比如32个卷积核,可以学习32种特征。

3.多层卷积

在实际应用中,往往使用多层卷积,然后再使用全连接层进行训练,多层卷积的目的是一层卷积学到的特征往往是局部的,层数越高,学到的特征就越全局化

经典框架

1. LeNet,这是最早用于数字识别的CNN


2. AlexNet, 2012 ILSVRC比赛远超第2名的CNN,比LeNet更深,用多层小卷积层叠加替换单大卷积层
3. ZF Net, 2013 ILSVRC比赛冠军
4. GoogLeNet, 2014 ILSVRC比赛冠军
5. VGGNet, 2014 ILSVRC比赛中的模型,图像识别略差于GoogLeNet,但是在很多图像转化学习问题(比如object detection)上效果奇好。
CNN经典模型框架展示与介绍

补充

1.一个77的卷积核 和 3个连续的3*3的卷积核的感受野大小一样,但后者的参数可少,并且每次进行的卷积都会进行一次非线性的激活,使得特征提取更为有效。

2.Inception模块,使用了分离卷积的思想

 3.1*1卷积的作用:特征融合,降低维数(降低channel的数量,减少运算)

4.Resnet

 5.BatchNorm

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值