To the Max
时间限制: 1000ms 内存限制: 65536KB
通过次数: 1总提交次数: 1
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
15
问题分析:(略)
这个问题和《HDU1081 POJ1050 LA2288 ZOJ1074 To The Max【最大子段和+DP+滑动窗口法】》是同一个问题,代码直接用就AC了。
程序说明:参见参考链接。
参考链接:HDU1081 POJ1050 LA2288 ZOJ1074 To The Max【最大子段和+DP+滑动窗口法】
题记:程序做多了,不定哪天遇见似曾相识的。
AC的C++程序如下:
/* UVALive2288 POJ1050 HDU1081 ZOJ1074 To The Max */
#include <iostream>
#include <limits.h>
#include <string.h>
using namespace std;
const int N = 100;
int a[N][N], b[N];
int main()
{
int n, maxval;
while(cin >> n) {
for(int i=0; i<n; i++)
for(int j=0; j<n; j++)
cin >> a[i][j];
maxval = INT_MIN;
for(int i=0; i<n; i++) {
memset(b, 0, sizeof(b));
for(int j=i; j<n; j++) {
int sum = 0;
for(int k=0; k<n; k++) {
b[k] += a[j][k];
if(sum + b[k] > 0)
sum += b[k];
else
sum = b[k];
maxval = max(maxval, sum);
}
}
}
cout << maxval << endl;
}
return 0;
}