行严格对角占优矩阵——一道矩阵代数作业题

本文详细介绍了如何证明行严格对角占优矩阵的行列式性质,即其绝对值不小于各元素差的乘积。通过矩阵F的定义,结合Gerschgorin圆盘定理,利用特征值和特征向量的关系,最终得出结论。同时,扩展到列严格对角占优矩阵的情况。
摘要由CSDN通过智能技术生成

今年(2018年)11月20日的矩阵代数课上老师布置了一道课后作业题,题目如下:
已知矩阵 A = ( a i j ) ∈ C n × n A=\left(a_{ij}\right)\in \mathbb{C}^{n\times n} A=(aij)Cn×n为行严格对角占优矩阵,记
H i = ∣ a i i ∣ − ∑ j = 1 , j ≠ i n ∣ a i j ∣ ( 1 ) H_i=\left\lvert a_{ii}\right\rvert -\sum _{j=1, j\neq i}^n \left\lvert a_{ij}\right\rvert \qquad (1) Hi=aiij=1,j̸=inaij(1)
其中 i , j = 1 , . . . , n i,j=1,...,n i,j=1,...,n ,则有 H i > 0 H_i>0 Hi>0
证明:
a b s ∣ A ∣ ≥ H 1 H 2 . . . H n ( 2 ) abs\left\lvert A\right\rvert \ge H_1 H_2 ...H_n\qquad (2) absAH1H2...Hn(2)
其中, ∣ A ∣ \left\lvert A\right\rvert A表示 A A A的行列式。

解题时,已知
∣ A ∣ = ∏ i = 1 n λ i \left\lvert A\right\rvert = \prod_{i=1}^n \lambda_i A=i=1nλi

a b s ∣ A ∣ = ∏ i = 1 n ∣ λ i ∣ abs\left\lvert A\right\rvert = \prod_{i=1}^n \left\lvert \lambda_i \right\rvert absA=i=1nλi
若对每一个 H i H_i Hi 都存在一个 λ k \lambda_k λk 使得 ∣ λ k ∣ > H i \left\lvert \lambda_k\right\rvert \gt H_i λk>Hi, 则可证得原命题。
因此,首先想到的是Gerschgorin(盖尔)圆盘定理,因为它与(1)式有相似的表达形式,但由于连通域的存在,无法保证保证每个盖尔圆都只有一个特征值,因此该思路不通。
然后就是在网上检索该题目的答案,最后找出来了,在 F e l i x R . G a n t m a c h e r Felix R. Gantmacher FelixR.Gantmacher所著的 《 M a t r i z e n t h e o r i e 》 《Matrizentheorie》 Matrizentheorie p 455 p455 p455(德语,矩阵论)。
书中给出的证明如下:
定义矩阵 F = ( f i j ) ∈ C n × n F=\left(f_{ij}\right)\in \mathbb{C}^{n\times n} F=(fij)Cn×n,其中
f i j = a i j H i f_{ij}=\frac {a_{ij}}{H_i} f

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值