多层自编码器的微调

本文详细介绍了多层自编码器的结构,包括2个隐藏层的栈式自编码器和1个softmax模型。微调流程包括初始化参数、优化参数和计算代价函数。关键在于stackedAECost函数的编写,该函数计算代价时考虑了正则项,并且对整个网络的参数进行惩罚。同时,文章讨论了梯度计算,特别是softmax模型和自编码器各层的梯度计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

多层自编码器由多个稀疏自编码器和一个Softmax分类器构成;(其中,每个稀疏自编码器的权值可以利用无标签训练样本得到, Softmax分类器参数可由有标签训练样本得到) 多层自编码器微调是指将多层自编码器看做是一个多层的神经网络,利用有标签的训练样本集,对该神经网络的权值进行调整。

1多层自编码器的结构

多层自编码器的结构如图1所示,它包含一个具有2个隐藏层的栈式自编码器和1个softmax模型;栈式自编码器的最后一个隐藏层的输出作为softmax模型的输入,softmax模型的输出作为整个网络的输出(输出的是条件概率向量)。

图1 多层自编码器的结构

微调多层自编码器的流程图如图2所示,该流程主要包括三部分:

(1)初始化待优化参数向量

(2)调用最优化函数,计算最优化参数向量

(3)得到最优化参数向量,可以转换为网络各结构所对应的参数

其中,最小化代价函数主要利用minFunc函数,该优化函数格式如下:

可知,为了实现优化过程,最为关键问题就是编写stackedAECost函数

图2 多层自编码器的微调流程

2整个网络参数的初始化

整个网络的参数stackedAETheta(列向

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值