最优化理论·非线性最小二乘

最优化理论·非线性最小二乘

标签(空格分隔): 数学

非线性最小二乘问题是椭圆拟合中最易遇到的优化问题,本文主要对非线性二乘的基本分析做简单介绍

1. 什么是最小二乘问题

目标函数能够写为m个函数平方和的优化问题
在这里插入图片描述

其中,每个函数 f i ( x ) f_i(x) fi(x)都是待优化向量 x x x的函数。

2.非线性最小二乘问题

  • f i ( x ) f_i(x) fi(x)是关于 x x x的非线性函数时,即为非线性优化问题
  • 此时,需要利用Taylor一阶展开近似 f i ( x ) f_i(x) fi(x)

2.1 f i ( x ) f_i(x) fi(x)的一阶近似

  • x ( k ) x^{(k)} x(k)是解 x x x的第k次近似,在此处将 f i ( x ) f_i(x) fi(x)进行一阶展开,并令一阶展开值为 φ i ( x ) \varphi_i(x) φi(x)
    在这里插入图片描述

  • 对上式进行整理,得到
    在这里插入图片描述
    在这里插入图片描述

  • 可以看到,一阶近似 φ i ( x ) \varphi_i(x) φi(x)是关于待优化向量 x x x的线性函数:

    • 在这里插入图片描述
      f i ( x ) f_i(x) fi(x)的梯度【 f i ( x ) f_i(x) fi(x)对向量x求导】在 x ( k ) x^{(k)} x(k)处的取值
    • 在这里插入图片描述
      f i ( x ) f_i(x) fi(x) x ( k ) x^{(k)} x(k)处的取值

2.2 F(x)的近似

在得到 f i ( x ) f_i(x) fi(x)的一阶近似后,便可以计算得到F(x)的一阶近似,该一阶近似为 Φ ( x ) \Phi(x) Φ(x)
在这里插入图片描述
在这里插入图片描述

2.3 分析 Φ ( x ) \Phi(x) Φ(x)的具体形式

  • 将平方和形式写为行向量、列向量乘积形式
    Φ ( x ) = [ φ 1 ( x ) , φ 2 ( x ) , ⋯   φ m ( x ) ] ⋅ [ φ 1 ( x ) φ 2 ( x ) … φ m ( x ) ] \Phi(x) = \left [ \varphi_1(x),\varphi_2(x),\cdots\,\varphi_m(x) \right ] \cdot \begin{bmatrix} \varphi_1(x)\\ \varphi_2(x)\\ \dots\\ \varphi_m(x) \end{bmatrix} Φ(x)=[φ1(x),φ2(x),φm(x)]φ1(x)φ2(x)φm(x)

  • φ i ( x ) \varphi_i(x) φi(x)的具体形式代入
    [ φ 1 ( x ) φ 1 ( x ) … φ 1 ( x ) ] = [   ▽ f 1 ( x ( k ) ) T ⋅ x − [ ▽ f 1 ( x ( k ) ) T − f 1 ( x ( k ) ) ]   ▽ f 2 ( x ( k ) ) T ⋅ x − [ ▽ f 2 ( x ( k ) ) T − f 2 ( x ( k ) ) ] …   ▽ f m ( x ( k ) ) T ⋅ x − [ ▽ f m ( x ( k ) ) T − f m ( x ( k ) ) ] ] \begin{bmatrix} \varphi_1(x)\\ \varphi_1(x)\\ \dots\\ \varphi_1(x) \end{bmatrix} = \begin{bmatrix} \ \bigtriangledown f_1(x^{(k)})^T \cdot x-\left [ \bigtriangledown f_1(x^{(k)})^T -f_1(x^{(k)})\right ]\\ \ \bigtriangledown f_2(x^{(k)})^T \cdot x-\left [ \bigtriangledown f_2(x^{(k)})^T -f_2(x^{(k)})\right ]\\ \dots\\ \ \bigtriangledown f_m(x^{(k)})^T \cdot x-\left [ \bigtriangledown f_m(x^{(k)})^T -f_m(x^{(k)})\right ]\\ \end{bmatrix} φ1(x)φ1(x)φ1(x)= f1(x(k))Tx[f1(x(k))Tf1(x(k))] f2(x(k))Tx[f2(x(k))Tf2(x(k))] fm(x(k))Tx[fm(x(k))Tfm(x(k))]

  • 继续整理得到
    [ φ 1 ( x ) φ 2 ( x ) … φ m ( x ) ] = [   ▽ f 1 ( x ( k ) ) T   ▽ f 2 ( x ( k ) ) T …   ▽ f m ( x ( k ) ) T ] ⋅ x − [   ▽ f 1 ( x ( k ) ) T   ▽ f 2 ( x ( k ) ) T …   ▽ f m ( x ( k ) ) T ] ⋅ x ( k ) + [   f 1 ( x ( k ) )   f 2 ( x ( k ) ) …   f m ( x ( k ) ) ] \begin{bmatrix} \varphi_1(x)\\ \varphi_2(x)\\ \dots\\ \varphi_m(x) \end{bmatrix}= \begin{bmatrix} \ \bigtriangledown f_1(x^{(k)})^T \\ \ \bigtriangledown f_2(x^{(k)})^T \\ \dots\\ \ \bigtriangledown f_m(x^{(k)})^T \\ \end{bmatrix} \cdot x -\begin{bmatrix} \ \bigtriangledown f_1(x^{(k)})^T \\ \ \bigtriangledown f_2(x^{(k)})^T \\ \dots\\ \ \bigtriangledown f_m(x^{(k)})^T \\ \end{bmatrix} \cdot x^{(k)}+ \begin{bmatrix} \ f_1(x^{(k)})\\ \ f_2(x^{(k)})\\ \dots\\ \ f_m(x^{(k)})\\ \end{bmatrix} φ1(x)φ2(x)φm(x)= f1(x(k))T f2(x(k))T fm(x(k))Tx f1(x(k))T f2(x(k))T fm(x(k))Tx(k)+ f1(x(k)) f2(x(k)) fm(x(k))

  • 引入 A k A_k Ak b b b!!!!!!
    在这里插入图片描述

在这里插入图片描述

其中:在这里插入图片描述

  • 则有
    [ φ 1 ( x ) φ 1 ( x ) … φ 1 ( x ) ] = A k ⋅ x − b \begin{bmatrix} \varphi_1(x)\\ \varphi_1(x)\\ \dots\\ \varphi_1(x) \end{bmatrix}= A_k \cdot x - b φ1(x)φ1(x)φ1(x)=Akxb

  • 那么,目标函数 F ( x ) F(x) F(x)的一阶近似 Φ ( x ) \Phi(x) Φ(x)的简洁形式为
    Φ ( x ) = ( A k x − b ) T ⋅ ( A k x − b ) \Phi(x) = (A_kx-b)^T \cdot (A_kx-b) Φ(x)=(Akxb)T(Akxb)
    它为标准的线性最小二乘问题

2.4 转化为线性最小二乘后的分析

Φ ( x ) = ( A k x − b ) T ⋅ ( A k x − b ) \Phi(x) = (A_kx-b)^T \cdot (A_kx-b) Φ(x)=(Akxb)T(Akxb)

  • 一阶近似得到的优化问题就是线性最小二乘问题,可以利用最小二乘问题求解,直接求解梯度为0的点,即目标函数在 x ( k ) x^{(k)} x(k)处的最小值点应该满足如下线性方程的解
    在这里插入图片描述

  • A K A_K AK为列满秩时,以上方程的解如下
    在这里插入图片描述

这里注意,利用上述方法求得的最优解为目标函数在 x ( k ) x^{(k)} x(k)处的一阶近似最小值,不能作为全局最优解,只能说明在局部向最优解点又进一步走近了,记为 x ( k + 1 ) x^{(k+1)} x(k+1)

在这里插入图片描述

2.5 对 x ( k + 1 ) x^{(k+1)} x(k+1)更新等式进一步分析化简

在这里插入图片描述

即有:

在这里插入图片描述

  • H k H_k Hk是目标函数 F ( x ) F(x) F(x)的一阶近似函数 Φ ( x ) \Phi(x) Φ(x)的Hessian矩阵,即可以说是目标函数 F ( x ) F(x) F(x)的近似Hessian矩阵
  • A k A_k Ak是目标函数 F ( x ) F(x) F(x)的梯度矩阵

注意:按照这里的推导,可以通过一步步迭代计算 x x x的最优值,这种方法可以称之为Gaussian-Newton方法,但仔细观察发现,当近似Hessian阵奇异或者近似奇异时,以上算法无法使用!也就引出了著名的LM算法


  • 24
    点赞
  • 93
    收藏
    觉得还不错? 一键收藏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值