数学
文章平均质量分 87
tina_ttl
这个作者很懒,什么都没留下…
展开
-
空间中三维矢量(Vectors in 3D space)
本文回顾三维空间中矢量的一些基本概念,虽然这些知识在高中数学中就已学到,但真的是会经常忘记1.坐标系相关内容1.1 单位矢量(Unit vector)如下图所示,矢量i−\underline{i}、j−\underline{j}、k−\underline{k}分别是长度为1的矢量(即单位矢量) 1.2 坐标基(Base vectors for a rectangular coordinate sy原创 2016-04-29 10:26:26 · 39600 阅读 · 4 评论 -
三维空间中的平面
三维空间中的平面本文主要复习高中几何中的平面方程如何定义三维空间中的平面 三维空间中的平面由两个量确定: ① 一个法向量(垂直于该平面的向量) ② 一个已知点(位于该平面上的一个点)下面给出在已知平面的法向量nn和平面上一个已知点PP的情况下,平面的方程平面法向量为:n→=(a,b,c)T\overrightarrow{n}=(a,b,c)^T平面一个已知点:P=(x0,y0,原创 2016-05-03 16:39:05 · 12373 阅读 · 0 评论 -
最优化理论·非线性最小二乘
最优化理论·非线性最小二乘标签(空格分隔): 数学 非线性最小二乘问题是椭圆拟合中最易遇到的优化问题,本文主要对非线性二乘的基本分析做简单介绍1. 什么是最小二乘问题目标函数能够写为m个函数平方和的优化问题 其中,每个函数fi(x)f_i(x)都是待优化向量xx的函数。2.非线性最小二乘问题当fi(x)f_i(x)是关于xx的非线性函数时,即为非线性优化问题此时,需要利用Taylor一阶原创 2017-02-24 10:20:53 · 27732 阅读 · 8 评论 -
最优化理论·光滑函数·Hessian矩阵·Jacobian矩阵·方向导数
Jacobian是向量函数f(x)f(\mathbf{x})相对于向量x\mathbf{x}的偏导数以一定方式排列成的矩阵1.向量函数:f(x)f(\mathbf{x})f(x)=⎡⎣⎢⎢⎢⎢⎢⎢f1(x)...fi(x)...fn(x)⎤⎦⎥⎥⎥⎥⎥⎥f(\mathbf{x})=\begin{bmatrix}f_{1}(\mathbf{x})\\ ...\\ f_{\mathit{i}}(\ma原创 2016-04-20 18:47:38 · 10194 阅读 · 3 评论