交叉熵函数的数学原理

交叉熵函数L=-[ylog\hat y+ (1-y)log(1-\hat y)]

 1. 二分类

二分类问题的输出 \hat y 一般是通过一个非线性函数(eg: softmax, tanh)将输出转换为0~1之前的概率值。预测值为1的概率:\hat y=P(y=1|x),预测值为0的概率:1-\hat y=P(y=0|x)

把上面的两种预测情况整合,可以得到:

P(y|x)=\hat y ^ y\cdot (1-\hat y)^{1-y}

对上式等式两边区log,得到:

logP(y|x) = log(\hat y^y\cdot (1-\hat y)^{1-y}) =ylog \hat y+(1-y)log(1-\hat y)

 

我们希望P(y|x)概率值越大越好,即logP(y|x)值越大越好,而在最优化问题中,我们需要将其转换为最小化问题。所以,我们希望最小化-logP(y|x)

由此,我们可以将损失函数设置为:

Loss = - logP(y|x)=-[ylog \hat y+(1-y)log(1-\hat y)]

上面这个损失函数是对于单个样本来讲的,如果对于数据集中的所有样本来说,那么损失函数为:

Loss=\sum_{i=1}^{m}y^{(i)}log\hat y^{(i)}+(1-y^{(i)})log(1-\hat y^{(i)}) 

2. 多分类

多分类其实是二分类的扩展,损失函数为:

Loss=-\sum_{c=1}^{m}y_c log(\hat y_c)

其中,m表示分类的个数。

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值