机器学习(二)线性回归

在这里插入图片描述

介绍

线性回归(Linear regression)是利用回归方程(函数)对一个或多个自变量(特征值)和因变量(目标值)之间关系进行建模的一种分析方式。

只有一个自变量的情况称为单变量回归,多于一个自变量情况的叫做多元回归
在这里插入图片描述

模型

线性回归当中主要有两种模型,一种是线性关系,另一种是非线性关系。
在这里插入图片描述

在这里插入图片描述

简单线性模型代码
from sklearn.linear_model import LinearRegression

x = [[80, 86],
[82, 80],
[85, 78],
[90, 90],
[86, 82],
[82, 90],
[78, 80],
[92, 94]]
y = [84.2, 80.6, 80.1, 90, 83.2, 87.6, 79.4, 93.4]

# 实例化API
estimator = LinearRegression()
# 使用fit方法进行训练
estimator.fit(x,y)
estimator.coef_
estimator.predict([[100, 80]])

损失函数

衡量真是结果和预测结果之间的误差的函数,又称目标函数,就是我们最终要求解的函数。

在这里插入图片描述
在这里插入图片描述
如何去减少这个损失,使我们预测的更加准确些?既然存在了这个损失,我们一直说机器学习有自动学习的功能,在线性回归这里更是能够体现。这里可以通过一些优化方法去优化(其实是数学当中的求导功能)回归的总损失。

答案就是求导,让这个函数的值最小,即误差最小。

优化方法
正规方程(不常用)

可以理解为将函数的系数写成矩阵形式,然后对矩阵进行求导。
在这里插入图片描述

理解:X为特征值矩阵,y为目标值矩阵。直接求到最好的结果
缺点:当特征过多过复杂时,求解速度太慢并且得不到结果
在这里插入图片描述

梯度下降(常用)

假设这样一个场景:

一个人被困在山上,需要从山上下来(i.e. 找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视度很低。

因此,下山的路径就无法确定,他必须利用自己周围的信息去找到下山的路径。这个时候,他就可以利用梯度下降算法来帮助自己下山。

具体来说就是,以他当前的所处的位置为基准,寻找这个位置最陡峭的地方,然后朝着山的高度下降的地方走,(同理,如果我们的目标是上山,也就是爬到山顶,那么此时应该是朝着最陡峭的方向往上走)。然后每走一段距离,都反复采用同一个方法,最后就能成功的抵达山谷。

当前权重 = 当前权重 - α梯度
α在梯度下降算法中被称作为学习率或者步长,意味着我们可以通过α来控制每一步走的距离
在这里插入图片描述
梯度的方向是函数在给定点上升最快的方向,那么梯度的反方向就是函数在给定点下降最快的方向,这正是我们所需要的。所以我们只要沿着梯度的反方向一直走,就能走到局部的最低点!

在这里插入图片描述

欠拟合和过拟合

过拟合:一个假设在训练数据上能够获得比其他假设更好的拟合, 但是在测试数据集上却不能很好地拟合数据,此时认为这个假设出现了过拟合的现象。(模型过于复杂)
欠拟合:一个假设在训练数据上不能获得更好的拟合,并且在测试数据集上也不能很好地拟合数据,此时认为这个假设出现了欠拟合的现象。(模型过于简单)

欠拟合:
原因:学习到数据的特征过少
解决办法:
1)添加其他特征项
2)添加多项式特征

过拟合:
原因:原始特征过多,存在一些嘈杂特征, 模型过于复杂是因为模型尝试去兼顾各个测试数据点
解决办法:
1)重新清洗数据
2)增大数据的训练量
3)正则化
4)减少特征维度,防止维灾难

正则化

L2正则化(Ridge回归)
作用:可以使得其中一些W的都很小,都接近于0,削弱某个特征的影响
优点:越小的参数说明模型越简单,越简单的模型则越不容易产生过拟合现象
在这里插入图片描述

L1正则化(LASSO回归)
作用:可以使得其中一些W的值直接为0,删除这个特征的影响,产生稀疏矩阵。
在这里插入图片描述

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值