神经网络:Network In Network

本文详细解读了《Network In Network》论文,该论文提出了mlpconv层和Global Average Pooling两种创新结构。mlpconv层通过在卷积操作后添加mlp层增强非线性表达力,等价于卷积层加1×1卷积层。Global Average Pooling替代全连接层,用作正则化手段防止过拟合。这一改进对后续的GoogLeNet等模型产生了深远影响。
摘要由CSDN通过智能技术生成

《Network In Network》论文解读


本文来自于新加坡国立大学,原文地址:

https://arxiv.org/abs/1312.4400

概述

本文提出了一种叫Network in Network的网络结构,主要贡献有两个:一是mlpconv网络结构,一是Global average pooling结构。

网络结构

结构

网络总体的结构如图所示,前面使用了3个mlpconv层,在输出的时候使用了Global average pooling进行分类。

mlpconv

传统的卷积层结构如下。

conv

卷积层由线性的卷积操作结合非线性的激活函数构成。写成式子就是:

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值