模型交易平台--信用卡客户消费行为分析

当前银行面临大量睡眠信用卡问题,造成金融资源浪费。银行可分析信用卡用户APP消费行为数据,挖掘关键因素,建立决策树回归模型预测消费金额。经处理训练、测试数据,模型score值达0.995,预测效果好,能助力银行制定精细运营策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    业务问题:
    据《中国银行卡产业发展蓝皮书(2021)》显示,截至2020年末,中国信用卡累计发卡量为11.3亿张,其中6个月内有使用记录的活卡为7.4亿张,有近4亿张信用卡处于“睡眠”状态。
睡眠信用卡将银行推向了十分槛尬的局面:一方面是睡眠信用卡数量不断扩大,造成有限的金融资源的浪费;一方面是为了占据信用卡市场,银行不得不继续向客户“兜售”信用卡,加剧信用卡市场的恶性循环。对此,金融监管机构出台了相关制度规范,要求银行强化信用卡业务经营管理,减少对金融资源的浪费。但目前各银行处理睡眠信用卡的工作仍没有突出成效。

解决方案
为应对睡眠信用卡大量存在的这一局面,银行方可以通过分析信用卡用户在APP上的消费行为数据各字段间的相关性,挖掘影响用户使用信用卡消费的关键因素,并建立回归模型预测用户的消费金额,以此制定更精细的用户运营策略,提高自家信用卡的使用率和用户粘性,减少银行金融资源的浪费。


   关键技术:影响消费因素分析;相关系数热力图;决策树回归;缺失值处理

 

   模型概览
   可用的数据字典:

 

   数据准备:

  a.训练数据orderAmount_train.csv,该表含有记录约2.3万条,部分字段存在缺失值。部分数据展示:

 

   b.测试数据orderAmount_test_x.csv(无revenue列),该表含有记录约5.9千条,部分字段存在缺失值。部分数据展示:


训练、测试数据有明显的数据缺失且存在非数值型数据,故数据输入模型前需对数据进行特征处理。
   

信用卡客户消费行为分析模型:

 

  将所有经过特征工程的测试样本作为输入样本,代入已构建好的模型,则可得到输出结果。
   输出结果为字段相关性矩阵与预测的客户下单金额。


   字段相关性矩阵:

 


  客户消费金额预测值:

 


   对决策树回归模型计算结果进行score指标评价,得到的score值为0.995。
决策树回归的预测值与真实值散点图如下:


   模型score值为0.995。该模型对客户订单金额预测效果较好,可将模型应用到相关的客户订单金额预测场景中,实现客户订单金额预测。基于决策树回归算法的信用卡客户消费行为分析模型,可以帮助银行找出影响用户下单的关键因素,并能有效地预测客户下单消费金额,以此帮助行方制定更精细的用户运营策略。

 


交付内容


模型体验
1点击【体验模型】


2进入建模平台,复制工程体验模型

 

 

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值