银行客户交易行为预测:特征分析

本文探讨了银行客户交易行为预测的问题,包括数据预处理中缺失值的检查,发现数据集无缺失值。接着分析了二值分类问题,目标变量表示客户是否有交易行为,存在不平衡问题。在特征工程阶段,使用置换重要性和部分依赖图来评估特征的重要性,发现某些特征对预测有显著影响。文章强调了特征工程在模型预测中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习训练营——机器学习爱好者的自由交流空间(入群联系qq:2279055353)

数据预处理

缺失数据检查

我们定义一个函数check_missing_data, 它的作用是检查训练集与检验集里是否有缺失值。

def check_missing_data(df):
    flag=df.isna().sum().any()
    if flag==True:
        total = df.isnull().sum()
        percent = (df.isnull().sum())/(df.isnull().count()*100)
        output = pd.concat([total, percent], axis=1, keys=['Total', 'Percent'])
        data_type = []
        # written by MJ Bahmani
        for col in df.columns:
            dtype = str(df[col].dtype)
            data_type.append(dtype)
        output['Types'] = data_type
        return(np.transpose(output))
    else:
        return(False)
print(check_missing_data(train)), print(check_missing_data(test))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值