对话系统评价指标

对话系统评价分为客观和主观指标,客观指标包括词重叠和词向量评价,如BLEU、Greedy Matching和Embedding Average。BLEU通过n-gram比较生成语句和参考答案的准确度;Greedy Matching和Embedding Average则基于词向量计算相似性,但难以捕捉长距离语义。主观评价关注流畅度、相关性和多样性。
摘要由CSDN通过智能技术生成

概述

对话系统的指标分为两大类:客观评价指标和主观评价指标

其中客观评价指标分为词重叠评价指标和词向量评价指标。

【词重叠评价指标】

根据生成语句与参考答案语句之间的词重叠率来进行评价

【词向量评价指标】

通过了解每一个词的意思来判断回复的相关性,词向量是实现这种评价方法的基础。

  1. 给每个词分配一个词向量
  2. 所有词的词向量矩阵通过拼接成为表示一个句子的句向量,得到生成语句和参考答案语句的句向量
  3. 通过余弦距离得到两者相似度进行比较。

    • 客观评价指标
    • 词重叠评价指标
    • BLEU
    • ROUGE
    • METEOR
    • 词向量评价指标
    • Greedy matching(贪婪匹配)
    • Embedding Average(向量均值法)
    • Vector Extrema(向量极值法)
    • 困惑度(perplexity)
    • 主观评价指标
    • 流畅度
    • 相关性
    • 多样性

BLEU

【思想】

BLEU就是比较模型的生成语句和参考答案语句中的n-gram词组在整个训练语料中共现次数。

该方法认为如果共现次数越多,则越准确,效果越好。

一般采用BLEU-4

【原理】

Pn(r,r^)=kmin(h(k,r),h(k,ri))kh(k,ri)BLEU=BPexp(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值