低秩论文阅读记录

1. Accurate Tensor Completion via Adaptive Low-Rank Representation

低秩表征方法是一种有效地从复杂数据中挖掘鲁棒表征的方法,低秩表征方法使用的假设条件是数据中包含冗余的信息等满足低秩约束的情形。在该篇论文中,作者结合张量补全的研究课题认为在张量补全的研究中,并不是张量相关的部分都满足低秩的条件,而且低秩的条件限制了张量补全的准确度。在这样的研究前提下,作者提出了一种自适应的低秩表征算法,即满足低秩要求的使用低秩的方法进行建模和不满足低秩要求的则采用其他方法进行建模。为了更好地验证上述猜想,作者重新定义了张量分解中 CANDECOMP/PARAFAC(CP)分解秩的计算方法,并且使用系数引导经验(sparsity-induced prior)对满足低秩要求的部分进行建模并自动求解该部分的秩。对于不满足低秩结构的部分,作者则是使用混合高斯经验(Mixture of Gaussians prior)进行建模,该部分的使用将使得整个模型能够更加的灵活和有效地模拟数据。并且在推理过程中构建了一个基于贝叶斯经验最小评估框架用于推理。在我看来,本篇论文最大的贡献在于对低秩经典框架的一种拓展,对于误差部分数据提供了一种新颖的建模角度。

2. Robust low-rank representation via residual projection for image classification

传统的低秩表征方法通常将残差部分当做噪声数据或者奇点,并不是学习数据鲁棒表征的重点数据源,而在图像分类任务中,噪声数据干扰和高维度都是影响分类准确度的重要因素。本文将残差部分看做输入数据和低秩表征的一种测量方式,并尝试从残差部分中学习到鲁棒低秩映射去寻找输入数据和对应低秩表征间的精准匹配,同时完成维度减少和噪声压缩的功能。本篇论文的立意比较新颖,以往低秩表征学习中的残差部分往往是被忽略的部分,而本文中则是从残差部分的数据中挖掘鲁棒的低秩映射方式去描述低秩表征和输入数据之间的关系,该部分约束条件的加入将会进一步降低噪声数据对模型的干扰。同时,对比深度学习中的残差结构,本文描述的残差信息的学习也能有效地降低数据信息的损失。本文针对低秩框架中的残差部分的处理是一个重要的亮点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值