数模笔记:微分方程与差分方程

微分方程与差分方程

一、概述

在这里插入图片描述

年份题目相关方法或理论
1996 年A: 最优捕鱼策略问题微分方程的问题
B: 节水洗衣机的程序设计问题偏微分方程,也可以用优化
2003 年A: SARS 的传播问题预测类问题,可用差分方程、微分方程
D: 抢渡长江问题微分方程、优化问题
2004 年C: 酒后开车问题微分方程
2008 年A: 数码相机定位(机理分析)模糊数学、微分方程
B: 高等教育学费标准探讨问题模糊数学、微分方程
2009 年A: 制动器试验台的控制方法问题微分方程、优化(求解物理应用题)
2014 年A: 缆坡三号软着陆轨道设计与控制策略常微分方程目标规划、优化模型
B: 创意平板折叠桌力学方程、物理模型、多目标规划
2015 年太阳影子定位(机理分析)偏微分方程
2018 年A: 高温作业专用服装设计偏微分方程、单目标规划、双目标规划
2019 年A: 高压油管的压力控制数据预处理、常微分方程、单目标规划
B: “同心协力”策略研究二维碰撞、二维碰撞(常微分方程)、多目标规划
2020 年A: 沪温曲线热传导、有限差分法、遍历法
2022 年A: 波浪能最大输出功率设计微分方程、模拟仿真、最优解
2023 年A: 优化设计启目镜场以及发电问题微分方程、优化问题

微分方程模型介绍

模型介绍

微分方程建模是数学建模的重要方法,因为许多实际问题的数学描述将导致求解微分方程的定解问题。解决相应问题可以按以下几步:

  1. 根据实际要求确定要研究的量(自变量、未知函数、必要的参数等)并确定坐标系。
  2. 找出这些量所满足的基本规律(物理的、几何的、化学的或生物学的等)。
  3. 运用这些规律列出方程和定解条件。
  4. 求解、分析结果。

列方程常见的方法

  1. 微元分析法与任意区域上取积分的方法

    通过微元分析法,利用已知的规律建立一些变量(自变量与未知函数)的微元之间的关系式,然后再通过取极限的方法得到微分方程,或等价地通过任意区域上取积分的方法来建立微分方程。

  2. 按规律直接列方程

    在数学、力学、物理、化学等学科中许多自然现象所满足的规律已为人们所熟悉,并直接由微分方程所描述。我们常利用这些规律对某些实际问题列出微分方程。

  3. 模拟近似法

    在生物、经济等学科中,许多现象所满足的规律并不很清楚且相当复杂,因此需要根据实际资料或大量的实验数据,提出各种假设。在一定的假设下,给出实际现象所满足的规律,然后利用适当的数学方法列出微分方程。

例题

一个较热的物体置于室温为 18°C 的房间内,该物体最初的温度是 60°C,3 分钟以后降到 50°C。想知道它的温度降到 30°C 需要多少时间?10 分钟以后它的温度是多少?

牛顿冷却(加热)定律:将温度为 T T T 的物体放入处于常温 m m m 的介质中时, T T T 的变化速率正比于 T T T 与周围介质的温度差。

牛顿冷却定律描述了物体温度随时间变化的过程。根据牛顿冷却定律,温度 T ( t ) T(t) T(t) 随时间 t t t 的变化满足以下微分方程:

d T d t = − k ( T − m ) \frac{dT}{dt} = -k(T - m) dtdT=k(Tm)

其中:

  • T ( t ) T(t) T(t) 是物体在时间 t t t 时的温度。
  • m m m 是环境温度。
  • k k k 是冷却常数,取决于物体和环境的性质。

我们可以通过积分这个方程得到 $ T(t) $ 的表达式:

T ( t ) = m + ( T 0 − m ) e − k t T(t) = m + (T_0 - m) e^{-kt} T(t)=m+(T0m)ekt

其中:

  • T 0 T_0 T0 是物体的初始温度。

我们根据给定条件来求解这个问题。具体步骤如下:

  1. 根据初始条件求解冷却常数 k k k
  2. 使用 k k k 求解物体温度降到 30°C 所需的时间。
  3. 计算 10 分钟后物体的温度。
    在这里插入图片描述
import numpy as np

# 已知条件
T0 = 60  # 初始温度
T1 = 50  # 3分钟后的温度
T_room = 18  # 环境温度
time1 = 3  # 时间为3分钟

# 求解冷却常数k
k = -np.log((T1 - T_room) / (T0 - T_room)) / time1

# 求解降到30度所需的时间
T_target = 30
time_to_target = -np.log((T_target - T_room) / (T0 - T_room)) / k

# 计算10分钟后的温度
time2 = 10
T_after_10_minutes = T_room + (T0 - T_room) * np.exp(-k * time2)

# 输出结果
print(f"物体温度降到30°C所需的时间为: {time_to_target:.2f} 分钟")
print(f"10分钟后物体的温度为: {T_after_10_minutes:.2f} °C")

二、传染病模型

背景与问题

  • 描述传染病的传播过程。
  • 分析受感染人数的变化规律。
  • 预报传染病高潮到来的时刻。
  • 预防传染病蔓延的手段。

基本方法:按照传播过程的一般规律建立数学模型
在这里插入图片描述

模型 1:I 模型

已感染人数(病人)记为 i ( t ) i(t) i(t)

假设:每个病人每天有效接触(足以使人致病)人数为 λ \lambda λ

建模:

求解采用的是分离变量法

i ( t + Δ t ) − i ( t ) = i ( t ) λ Δ t i(t + \Delta t) - i(t) = i(t) \lambda \Delta t i(t+Δt)i(t)=i(t)λΔt

d i d t = λ i \frac{di}{dt} = \lambda i dtdi=λi

i ( 0 ) = i 0 i(0) = i_0 i(0)=i0

求解、分析、检验:

d i d t = λ i \frac{di}{dt} = \lambda i dtdi=λi

i ( 0 ) = i 0 i(0) = i_0 i(0)=i0

i ( t ) = i 0 e λ t i(t) = i_0 e^{\lambda t} i(t)=i0eλt

t → ∞ ⇒ i ( t ) → ∞ t \rightarrow \infty \Rightarrow i(t) \rightarrow \infty ti(t)

在这里插入图片描述

显然这个模型的结果是不合理的,感染人数不可能超过总人数。
若有效接触的是病人,则不能使病人数增加。
必须区分已感染者和未感染者以及总人数。

代码
%创建一个.m文件并命名为i_model.m
% I Model
function [t, i] = i_model(i0, lambda, tmax)
    [t, i] = ode45(@(t, i) lambda * i, [0 tmax], i0);
end

注意:要创建两个文件,上面的代码创建的是 matlab 的函数文件

% 设置参数
i0 = 1;  % 初始感染人数
lambda = 0.5;  % 每天有效接触人数
tmax = 20;  % 模拟时间

% 求解模型
[t, i] = i_model(i0, lambda, tmax);

% 绘图
figure;
plot(t, i);
title('I Model');
xlabel('Time');
ylabel('Infected Population');

模型 2:SI 模型

区分已感染者和未感染者

假设:

  1. 总人数 N N N 不变,病人和健康人的比例分别为 i ( t ) , s ( t ) i(t), s(t) i(t),s(t)

注意这里 i ( t ) i(t) i(t)表示的是比例和上一个模型表示人数是不一样的

  1. 每个病人每天有效接触人数为 λ \lambda λ,且使接触的健康人致病。

建模:

N [ i ( t + Δ t ) − i ( t ) ] = N i ( t ) λ Δ t s ( t ) N[i(t + \Delta t) - i(t)] = N i(t) \lambda \Delta t s(t) N[i(t+Δt)i(t)]=Ni(t)λΔts(t)

d i d t = λ s i \frac{di}{dt} = \lambda s i dtdi=λsi

s ( t ) + i ( t ) = 1 s(t) + i(t) = 1 s(t)+i(t)=1

求解、分析、检验:

{ d i d t = λ i ( 1 − i ) i ( 0 ) = i 0 \begin{cases} \frac{di}{dt} = \lambda i (1 - i) \\ i(0) = i_0 \end{cases} {dtdi=λi(1i)i(0)=i0

∫ d i i ( 1 − i ) = ∫ λ d t \int \frac{di}{i(1 - i)} = \int \lambda dt i(1i)di=λdt

i ( t ) = 1 1 + ( 1 i 0 − 1 ) e − λ t i(t) = \frac{1}{1 + \left(\frac{1}{i_0} - 1\right)e^{-\lambda t}} i(t)=1+(i011)eλt1

在这里插入图片描述
在这里插入图片描述

t = t m t = t_m t=tm 时, d i d t \frac{di}{dt} dtdi 最大

t m ∼ t_m \sim tm 传染病高峰到来的时刻

t m = λ − 1 ln ⁡ ( 1 i 0 − 1 ) t_m = \lambda^{-1} \ln \left(\frac{1}{i_0} - 1\right) tm=λ1ln(i011)

λ ↓ → t m ↑ \lambda\downarrow \rightarrow t_m \uparrow λ↓→tm

t → ∞ ⇒ i → 1 t \rightarrow \infty \Rightarrow i \rightarrow 1 ti1

代码
%创建一个.m文件并命名为si_model.m
% SI Model
function [t, y] = si_model(i0, lambda, tmax)
    [t, y] = ode45(@(t, y) [lambda * y(1) * (1 - y(1))], [0 tmax], i0);
end

注意:要创建两个文件,上面的代码创建的是 matlab 的函数文件

% 设置参数
i0 = 0.1; % 初始感染比例
lambda = 0.5; % 每天有效接触人数
tmax = 50; % 模拟时间

% 求解模型
[t, i] = si_model(i0, lambda, tmax);

% 找到 infected 和 susceptible 比例为 0.5 的时间点
infected_half = interp1(i, t, 0.5);
susceptible_half = interp1(1-i, t, 0.5);

% 绘图
figure;
plot(t, i, 'b', 'LineWidth', 2);
hold on;
plot(t, 1-i, 'r', 'LineWidth', 2);

% 标记 infected 和 susceptible 比例为 0.5 的点
plot(infected_half, 0.5, 'bo', 'MarkerSize', 10, 'MarkerFaceColor', 'b');
plot(susceptible_half, 0.5, 'ro', 'MarkerSize', 10, 'MarkerFaceColor', 'r');

% 添加标记点的文本说明
text(infected_half, 0.55, ['t_mi = ', num2str(infected_half, '%.2f')], 'Color', 'b', 'HorizontalAlignment', 'right');
text(susceptible_half, 0.55, ['t_ms = ', num2str(susceptible_half, '%.2f')], 'Color', 'r', 'HorizontalAlignment', 'left');

title('SI Model');
xlabel('Time');
ylabel('Population Ratio');
legend('Infected', 'Susceptible', 'Location', 'north');

% 添加水平线以突出 0.5 比例
yline(0.5, '--k', 'LineWidth', 1);

% 计算传染病高峰时刻
tm = 1/lambda * log((1/i0) - 1);
disp(['Peak time: ', num2str(tm)]);

% 设置坐标轴范围,确保标记点可见
ylim([0 1.1]);

模型 3:SIS 模型

考虑病人自愈且可再次被感染

传染病无免疫性——病人治愈成为健康人,健康人可再次被感染。

增加假设:

病人每天治愈的比例为 μ \mu μ

λ ∼ \lambda \sim λ 日接触率

μ ∼ \mu \sim μ 日治愈率

σ = λ / μ \sigma = \lambda / \mu σ=λ/μ

建模:

N [ i ( t + Δ t ) − i ( t ) ] = N i ( t ) λ Δ t s ( t ) − N i ( t ) μ Δ t N[i(t + \Delta t) - i(t)] = Ni(t)\lambda \Delta t s(t) - Ni(t) \mu \Delta t N[i(t+Δt)i(t)]=Ni(t)λΔts(t)Ni(t)μΔt

{ d i d t = λ i ( 1 − i ) − μ i = − λ i [ i − ( 1 − 1 σ ) ] i ( 0 ) = i 0 \begin{cases} \frac{di}{dt} = \lambda i (1 - i) - \mu i = -\lambda i \left[i - \left(1 - \frac{1}{\sigma}\right)\right] \\ i(0) = i_0 \end{cases} {dtdi=λi(1i)μi=λi[i(1σ1)]i(0)=i0

求解分析检验:

d i d t = − λ i [ i − ( 1 − 1 σ ) ] \frac{di}{dt} = -\lambda i \left[i - \left(1 - \frac{1}{\sigma}\right)\right] dtdi=λi[i(1σ1)]

在这里插入图片描述
在这里插入图片描述

代码
%创建一个.m文件并命名为sis_model.m
% SIS Model
function [t, y] = sis_model(i0, lambda, mu, tmax)
    [t, y] = ode45(@(t, y) [lambda * y(1) * (1 - y(1)) - mu * y(1)], [0 tmax], i0);
end

注意:要创建两个文件,上面的代码创建的是 matlab 的函数文件

% 设置参数
i0 = 0.01;  % 初始感染比例
lambda = 0.5;  % 每天有效接触人数
mu = 0.1;  % 每天治愈比例
tmax = 100;  % 模拟时间

% 求解模型
[t, i] = sis_model(i0, lambda, mu, tmax);

% 绘图
figure;
plot(t, i);
hold on;
plot(t, 1-i);
title('SIS Model');
xlabel('Time');
ylabel('Population Ratio');
legend('Infected', 'Susceptible');

% 计算平衡点
equilibrium = 1 - mu/lambda;
disp(['Equilibrium point: ', num2str(equilibrium)]);

% 情况1: σ > 1
lambda1 = 0.5;
mu1 = 0.2;
[t1, i1] = sis_model(i0, lambda1, mu1, tmax);

% 情况2: σ ≤ 1
lambda2 = 0.2;
mu2 = 0.5;
[t2, i2] = sis_model(i0, lambda2, mu2, tmax);

% 绘图
figure;
subplot(1,2,1);
plot(t1, i1);
title('SIS Model: σ > 1');
xlabel('Time');
ylabel('Infected Ratio');
yline(1 - mu1/lambda1, '--r', 'Equilibrium');

subplot(1,2,2);
plot(t2, i2);
title('SIS Model: σ ≤ 1');
xlabel('Time');
ylabel('Infected Ratio');

% 显示R₀值
disp(['R₀ (Case 1): ', num2str(lambda1/mu1)]);
disp(['R₀ (Case 2): ', num2str(lambda2/mu2)]);

模型 4:SIR 模型

传染病有免疫性——病人治愈后即移出感染系统,称为移出者

假设:

  1. 总人数 N N N 不变,病人、健康人和移出者的比例分别为 i ( t ) , s ( t ) , r ( t ) i(t), s(t), r(t) i(t),s(t),r(t)
  2. 病人的日接触率 λ \lambda λ, 日治愈率 μ \mu μ, 接触数 σ = λ / μ \sigma = \lambda / \mu σ=λ/μ

建模:

s ( t ) + i ( t ) + r ( t ) = 1 s(t) + i(t) + r(t) = 1 s(t)+i(t)+r(t)=1

需要建立 i ( t ) , s ( t ) , r ( t ) i(t), s(t), r(t) i(t),s(t),r(t) 的两个方程。

N [ r ( t + Δ t ) − r ( t ) ] = N i ( t ) μ Δ t N[r(t + \Delta t) - r(t)] = Ni(t) \mu \Delta t N[r(t+Δt)r(t)]=Ni(t)μΔt

N [ i ( t + Δ t ) − i ( t ) ] = N i ( t ) λ Δ t s ( t ) − N i ( t ) μ Δ t N[i(t + \Delta t) - i(t)] = Ni(t)\lambda \Delta t s(t) - Ni(t) \mu \Delta t N[i(t+Δt)i(t)]=Ni(t)λΔts(t)Ni(t)μΔt

N [ s ( t + Δ t ) − s ( t ) ] = − λ N s ( t ) i ( t ) Δ t N[s(t + \Delta t) - s(t)] = -\lambda Ns(t)i(t) \Delta t N[s(t+Δt)s(t)]=λNs(t)i(t)Δt

i 0 + s 0 ≈ 1 ( 通常 r ( 0 ) = r 0 很小 ) i_0 + s_0 \approx 1 \quad (通常r(0) = r_0 很小) i0+s01(通常r(0)=r0很小)

求解分析检验:

{ d i d t = λ s i − μ i d s d t = − λ s i i ( 0 ) = i 0 , s ( 0 ) = s 0 i 0 + s 0 ≈ 1 ( 通常 r ( 0 ) = r 0 很小 ) \begin{cases} \frac{di}{dt} = \lambda si - \mu i \\ \frac{ds}{dt} = -\lambda si \\ i(0) = i_0, \quad s(0) = s_0\\ i_0 + s_0 \approx 1 \quad (通常r(0) = r_0 很小) \end{cases} dtdi=λsiμidtds=λsii(0)=i0,s(0)=s0i0+s01(通常r(0)=r0很小)

由于无法求出 i ( t ) , s ( t ) i(t), s(t) i(t),s(t) 的解析解。
我们考虑其他办法:

  1. 数值计算
  2. 定性分析
    相平面上研究解析性质。
SIR 模型的数值解

λ = 1 \lambda = 1 λ=1, μ = 0.3 \mu = 0.3 μ=0.3, i 0 = 0.02 i_0 = 0.02 i0=0.02, s 0 = 0.98 s_0 = 0.98 s0=0.98, 用 MATLAB 计算作图 i ( t ) i(t) i(t), s ( t ) s(t) s(t) i ( s ) i(s) i(s)

d i d s = λ s i − μ i − λ s i \frac{di}{ds} = \frac{\lambda si - \mu i}{-\lambda si} dsdi=λsiλsiμi

在这里插入图片描述
在这里插入图片描述

模型的相轨线分析

对于前面求解分析检验的方程组

消去 d t dt dt, σ = λ / μ \sigma = \lambda / \mu σ=λ/μ

{ d i d s = 1 σ s − 1 i ∣ s = s 0 = i 0 \begin{cases} \frac{di}{ds} = \frac{1}{\sigma s} - 1 \\ i \big|_{s = s_0} = i_0 \end{cases} {dsdi=σs11i s=s0=i0

相轨线:
i ( s ) = ( s 0 + i 0 ) − s + 1 σ ln ⁡ s s 0 i(s) = (s_0 + i_0) - s + \frac{1}{\sigma} \ln \frac{s}{s_0} i(s)=(s0+i0)s+σ1lns0s

相轨线 i ( s ) i(s) i(s) 的定义域:

D = { ( s , i ) ∣ s ≥ 0 , i ≥ 0 , s + i ≤ 1 } D = \{(s, i) | s \geq 0, i \geq 0, s + i \leq 1\} D={(s,i)s0,i0,s+i1}

s ( t ) s(t) s(t) 单调递减 → \rightarrow 相轨线的方向
在这里插入图片描述

预防传染病蔓延的手段

传染病不蔓延的条件—— s 0 < 1 / σ s_0 < 1/\sigma s0<1/σ

  • 提高阈值 1 / σ 1/\sigma 1/σ

    • 降低 σ \sigma σ
    • λ \lambda λ (日接触率) ↓ → \downarrow \rightarrow ↓→ 卫生水平 ↑ \uparrow
    • μ \mu μ (日治愈率) ↑ → \uparrow \rightarrow ↑→ 医疗水平 ↑ \uparrow
  • 降低 s 0 s_0 s0

    • 提高 r 0 r_0 r0 → \rightarrow 群体免疫

s 0 + i 0 + r 0 = 1 s_0 + i_0 + r_0 = 1 s0+i0+r0=1

代码
%创建一个.m文件并命名为i_model.m
% SIR Model
function [t, y] = sir_model(i0, s0, lambda, mu, tmax)
    [t, y] = ode45(@(t, y) [
        lambda * y(1) * y(2) - mu * y(1)  % di/dt
        -lambda * y(1) * y(2)  % ds/dt
        mu * y(1)  % dr/dt
    ], [0 tmax], [i0; s0; 1-i0-s0]);
end

注意:要创建两个文件,上面的代码创建的是 matlab 的函数文件

% 设置参数
i0 = 0.01;  % 初始感染比例
s0 = 0.99;  % 初始易感比例
lambda = 0.5;  % 每天有效接触人数
mu = 0.1;  % 每天治愈比例
tmax = 100;  % 模拟时间

% 求解模型
[t, y] = sir_model(i0, s0, lambda, mu, tmax);

% 绘图
figure;
plot(t, y);
title('SIR Model');
xlabel('Time');
ylabel('Population Ratio');
legend('Infected', 'Susceptible', 'Removed');

% 相平面图
figure;
plot(y(:,2), y(:,1));
title('SIR Model Phase Plane');
xlabel('Susceptible');
ylabel('Infected');

% 计算R0
R0 = lambda / mu;
disp(['R0: ', num2str(R0)]);

三、香烟过滤嘴的作用模型

问题

  • 过滤嘴的作用与它的材料和长度有什么关系?
  • 人体吸入的毒物量与哪些因素有关,其中什么因素影响大,什么因素影响小?

模型分析

  • 分析吸烟时毒物进入人体的过程,建立吸烟过程的数学模型。

模型假设

  1. l 1 ∼ l_1 \sim l1 烟草长, l 2 ∼ l_2 \sim l2 过滤嘴长, l = l 1 + l 2 l = l_1 + l_2 l=l1+l2, 毒物总量 M M M 均匀分布,密度 w 0 = M / l w_0 = M/l w0=M/l
  2. 点燃处毒物进入空气和沿香烟穿行的数量比是 a : a ′ a : a' a:a, a ′ + a = 1 a' + a = 1 a+a=1
  3. 未点燃的烟草和过滤嘴对穿行的毒物的单位时间吸收速率分别是 b b b β \beta β
  4. 烟雾沿香烟穿行速度是常数 v v v, 香烟燃烧速度是常数 u u u, v ≫ u v \gg u vu

在这里插入图片描述

模型建立

t = 0 , x = 0 t = 0, x = 0 t=0,x=0, 点燃香烟

q ( x , t ) ∼ q(x,t) \sim q(x,t) 毒物在 x x x 处的流速(单位时间的流量)

w ( x , t ) ∼ w(x,t) \sim w(x,t) 毒物密度

w ( x , 0 ) = w 0 w(x,0) = w_0 w(x,0)=w0

Q = ∫ 0 T q ( l , t ) d t , T = l 1 / u Q = \int_0^T q(l, t) dt, \quad T = l_1 / u Q=0Tq(l,t)dt,T=l1/u

  1. q ( x , t ) q(x,t) q(x,t)

流量守恒:

{ q ( x , t ) − q ( x + Δ x , t ) = q ( x , t ) b Δ x v , u t ≤ x ≤ l 1 q ( x , t ) − q ( x + Δ x , t ) = q ( x , t ) β Δ x v , l 1 ≤ x ≤ l \begin{cases} q(x,t) - q(x+\Delta x,t) = \frac{q(x,t)b\Delta x}{v}, & ut \leq x \leq l_1 \\ q(x,t) - q(x+\Delta x,t) = \frac{q(x,t)\beta\Delta x}{v}, & l_1 \leq x \leq l \end{cases} {q(x,t)q(x+Δx,t)=vq(x,t)bΔx,q(x,t)q(x+Δx,t)=vq(x,t)βΔx,utxl1l1xl

d q ( x , t ) d x = { − b v q ( x , t ) , u t ≤ x ≤ l 1 − β v q ( x , t ) , l 1 ≤ x ≤ l \frac{dq(x,t)}{dx} = \begin{cases} -\frac{b}{v}q(x,t), & ut \leq x \leq l_1 \\ -\frac{\beta}{v}q(x,t), & l_1 \leq x \leq l \end{cases} dxdq(x,t)={vbq(x,t),vβq(x,t),utxl1l1xl

定解条件: q ( u t , t ) = a u w ( u t , t ) q(ut,t) = auw(ut,t) q(ut,t)=auw(ut,t)

  1. w ( u t , t ) w(ut,t) w(ut,t) 考察 Δ t \Delta t Δt 内毒物密度的增量

w ( x , t + Δ t ) − w ( x , t ) = q ( x , t ) Δ t b Δ t v Δ t w(x, t + \Delta t) - w(x, t) = \frac{q(x,t)\Delta t b\Delta t}{v\Delta t} w(x,t+Δt)w(x,t)=vΔtq(x,t)ΔtbΔt

其中: q ( x , t ) = a u w ( u t , t ) e − b ( x − u t ) v q(x,t) = auw(ut,t)e^{-\frac{b(x-ut)}{v}} q(x,t)=auw(ut,t)evb(xut)

{ ∂ w ( u t , t ) ∂ t = b v a u w ( u t , t ) e − b ( x − u t ) v w ( x , 0 ) = w 0 \begin{cases}\frac{\partial w(ut,t)}{\partial t} = \frac{b}{v}auw(ut,t)e^{-\frac{b(x-ut)}{v}}\\ w(x,0)=w_0 \end{cases} {tw(ut,t)=vbauw(ut,t)evb(xut)w(x,0)=w0

w ( u t , t ) = w 0 a ′ ( 1 − a e − a ′ b u t v ) , a ′ = 1 − a w(ut,t) = \frac{w_0}{a'}\left(1 - ae^{-\frac{a'but}{v}}\right), \quad a' = 1-a w(ut,t)=aw0(1aevabut),a=1a

  1. 计算 Q Q Q~吸一支烟毒物进入人体总量

w ( u t , t ) = w 0 a ′ ( 1 − a e − a ′ b u t v ) w(ut,t) = \frac{w_0}{a'}\left(1 - ae^{-\frac{a'but}{v}}\right) w(ut,t)=aw0(1aevabut)

q ( l , t ) = a u w ( u t , t ) e − b l 1 − w t v e − β l 2 v q(l,t) = auw(ut,t)e^{-\frac{b l_1-wt}{v}}e^{-\frac{\beta l_2}{v}}\\ q(l,t)=auw(ut,t)evbl1wtevβl2

Q = ∫ 0 l 1 / u q ( l , t ) d t = a u w 0 a ′ b e − β l 2 v ( 1 − e − a ′ b l 1 v ) Q = \int_0^{l_1/u} q(l,t) dt = \frac{auw_0}{a'b} e^{-\frac{\beta l_2}{v}}\left(1 - e^{-\frac{a'bl_1}{v}}\right) Q=0l1/uq(l,t)dt=abauw0evβl2(1evabl1)

Q = a M e − β l 2 v φ ( r ) , r = a ′ b l 1 v , φ ( r ) = 1 − e − r r Q = aMe^{-\frac{\beta l_2}{v}} \varphi(r), \quad r = \frac{a'bl_1}{v}, \quad \varphi(r) = \frac{1 - e^{-r}}{r} Q=aMevβl2φ(r),r=vabl1,φ(r)=r1er

结果分析

  1. Q Q Q a , M a, M a,M 成正比。( a M aM aM 是毒物集中在 x = l 1 x = l_1 x=l1 处的吸入量)
  2. e − β l 2 v ∼ e^{-\frac{\beta l_2}{v}} \sim evβl2 过滤嘴因素, β , l 2 ∼ \beta, l_2 \sim β,l2 负指数作用
  3. φ ( r ) ∼ \varphi(r) \sim φ(r) 烟草的吸收作用 (烟草为什么有作用?)

r = a ′ b l 1 v ≪ 1 r = \frac{a'bl_1}{v} \ll 1 r=vabl11

φ ( r ) = 1 − r 2 \varphi(r) = 1 - \frac{r}{2} φ(r)=12r

Q = a M e − β l 2 v ( 1 − a ′ b l 1 2 v ) , b , l 1 ∼ 线性作用 Q = aMe^{-\frac{\beta l_2}{v}}\left(1 - \frac{a'bl_1}{2v}\right), \quad b,l_1 \sim \text{线性作用} Q=aMevβl2(12vabl1),b,l1线性作用

  1. 与另一支不带过滤嘴的香烟比较, w 0 , b , a , v , l w_0, b, a, v, l w0,b,a,v,l 均相同,吸至 x = l 1 x = l_1 x=l1 抛掉。

带过滤嘴:

Q 1 = a w 0 v a ′ b e − β l 2 v ( 1 − e − a ′ b l 1 v ) Q_1 = \frac{a w_0 v}{a' b} e^{-\frac{\beta l_2}{v}} \left(1 - e^{-\frac{a' b l_1}{v}}\right) Q1=abaw0vevβl2(1evabl1)

不带过滤嘴:

Q 2 = a w 0 v a ′ b ( 1 − e − a ′ b l 1 v ) Q_2 = \frac{a w_0 v}{a' b} \left(1 - e^{-\frac{a' b l_1}{v}}\right) Q2=abaw0v(1evabl1)

Q 1 Q 2 = e − ( β − b ) l 2 v \frac{Q_1}{Q_2} = e^{-\frac{(\beta - b) l_2}{v}} Q2Q1=ev(βb)l2

β > b ⇒ Q 1 < Q 2 \beta > b \Rightarrow Q_1 < Q_2 β>bQ1<Q2

提高 β b \beta b βb 与加长 l 2 l_2 l2,效果相同。

总结

  • 引入两个基本函数:流量 q ( x , t ) q(x,t) q(x,t) 和密度 w ( x , t ) w(x,t) w(x,t),运用物理学的守恒定律通过微元方法建立微分方程,构造动态模型。
  • 对求解结果进行定性和定量分析,得到合理的实际结论。

在这里插入图片描述

代码

import numpy as np
import matplotlib.pyplot as plt

# 参数设置
M = 1.0  # 毒物总量 (任意单位)
a = 0.5  # 毒物进入空气和穿行的比例 (a = 0.5, a' = 0.5)
b = 0.1  # 烟草的吸收系数
beta = 0.8  # 过滤嘴的吸收系数, 增大以突出非线性效果
v = 1.0  # 烟雾穿行速度
l1 = 1.0  # 烟草长度
l2_values = np.linspace(0, 10, 100)  # 过滤嘴长度的变化范围, 增大以观察非线性效果

# 计算 Q1 和 Q2
def calculate_Q(l1, l2, a, M, b, beta, v):
    a_prime = 1 - a
    r = a_prime * b * l1 / v
    Q1 = (a * M * v / (a_prime * b)) * np.exp(-beta * l2 / v) * (1 - np.exp(-r))
    Q2 = (a * M * v / (a_prime * b)) * (1 - np.exp(-r))
    return Q1, Q2

Q1_values = []
Q2_values = []
for l2 in l2_values:
    Q1, Q2 = calculate_Q(l1, l2, a, M, b, beta, v)
    Q1_values.append(Q1)
    Q2_values.append(Q2)

# 比较有过滤嘴和无过滤嘴的毒物量
Q1_values = np.array(Q1_values)
Q2_values = np.array(Q2_values)
Q_ratio = Q1_values / Q2_values

# 绘图
plt.figure(figsize=(10, 6))
plt.plot(l2_values, Q1_values, label='Q1 (With Filter)')
plt.plot(l2_values, Q2_values, label='Q2 (Without Filter)')
plt.plot(l2_values, Q_ratio, label='Q1/Q2 Ratio', linestyle='--')
plt.xlabel('Filter Length l2')
plt.ylabel('Toxin Amount Q')
plt.title('Effect of Filter Length and Material on Toxin Inhalation')
plt.legend()
plt.grid(True)
plt.show()

四、烟雾的扩散与消失模型

现象和问题

  • 炮弹在空中爆炸,烟雾向四周扩散,形成圆形不透光区域。
  • 不透光区域不断扩大,然后区域边界逐渐明亮,区域缩小,最后烟雾消失。
  • 建立模型描述烟雾扩散和消失过程,分析消失时间与各因素的关系。

问题分析

  • 无穷空间由瞬时点源导致的扩散过程,用二阶偏微分方程描述烟雾浓度的变化。
  • 观察到的烟雾消失与烟雾对光线的吸收,以及仪器对明暗的灵敏度有关。

模型假设

  1. 扩散服从扩散定律。
  2. 光线穿过烟雾时光强的相对减少与与烟雾浓度成正比;无烟雾的大小不影响光强。
  3. 穿过烟雾进入仪器的光线只有明暗之分,明暗界限由仪器灵敏度决定。

模型建立

扩散定律:单位时间通过单位法向面积的流量 q q q 与浓度 C C C 的梯度成正比。

q = − k ⋅ ∇ C q = -k \cdot \nabla C q=kC

烟雾浓度 C ( x , y , z , t ) C(x,y,z,t) C(x,y,z,t) 的变化规律

[ t , t + Δ t ] [t,t+\Delta t] [t,t+Δt] 通过 Ω \Omega Ω流出量 Q 1 = ∫ t t + Δ t ∬ S q ⋅ n d σ d t Q_1 = \int_{t}^{t+\Delta t} \iint_S q \cdot n d \sigma dt Q1=tt+ΔtSqndσdt

Ω \Omega Ω 内烟雾改变量 Q 2 = ∭ v [ C ( x , y , z , t + Δ t ) − C ( x , y , z , t ) ] d V Q_2 = \iiint_{v} [C(x,y,z,t+\Delta t) - C(x,y,z,t)] dV Q2=v[C(x,y,z,t+Δt)C(x,y,z,t)]dV

高斯公式:

∬ S q ⋅ n d σ = ∭ V div  q d V = − k ∭ V div  ( ∇ C ) d V \iint_S q \cdot n d\sigma = \iiint_V \text{div } q dV = -k \iiint_V \text{div } (\nabla C) dV Sqndσ=Vdiv qdV=kVdiv (C)dV

Q 2 = − Q 1 Q_2 = -Q_1 Q2=Q1

∂ C ∂ t = k [ div ( ∇ C ) ] = k ( ∂ 2 C ∂ x 2 + ∂ 2 C ∂ y 2 + ∂ 2 C ∂ z 2 ) , − ∞ < x , y , z < ∞ , t > 0 \frac{\partial C}{\partial t} = k [\text{div}(\nabla C)] = k \left(\frac{\partial^2 C}{\partial x^2} + \frac{\partial^2 C}{\partial y^2} + \frac{\partial^2 C}{\partial z^2}\right),-\infty<x,y,z<\infty,t>0 tC=k[div(C)]=k(x22C+y22C+z22C),<x,y,z<,t>0

初始条件

C ( x , y , z , 0 ) = Q δ ( x , y , z ) C(x, y, z, 0) = Q \delta(x, y, z) C(x,y,z,0)=Qδ(x,y,z)

  • Q ∼ Q \sim Q 炮弹释放的烟雾总量
  • δ ∼ \delta \sim δ 单位强度的点源函数

求解方程:

C ( x , y , z , t ) = Q ( 4 π k t ) 3 / 2 e − x 2 + y 2 + z 2 4 k t C(x, y, z, t) = \frac{Q}{(4 \pi kt)^{3/2}} e^{-\frac{x^2 + y^2 + z^2}{4 kt}} C(x,y,z,t)=(4πkt)3/2Qe4ktx2+y2+z2

光强穿过烟雾时的变化规律

  • I ( l ) ∼ I(l) \sim I(l) 沿 l l l 方向的光强
  • C ( l ) ∼ C(l) \sim C(l) 沿 l l l 方向的烟雾浓度

假设光强的相对减少与烟雾浓度成正比。

d I ( l ) d l = − α C ( l ) I ( l ) \frac{dI(l)}{dl} = -\alpha C(l) I(l) dldI(l)=αC(l)I(l)

记未进入烟雾( l ≤ l 0 l \leq l_0 ll0)时光强为 I ( l 0 ) = I 0 I(l_0) = I_0 I(l0)=I0:

I ( l ) = I 0 e − α ∫ l 0 l C ( s ) d s I(l) = I_0 e^{-\alpha \int_{l_0}^{l} C(s) ds} I(l)=I0eαl0lC(s)ds

仪器灵敏度与烟雾明暗界限

  • 烟雾浓度连续变化
  • 烟雾中光强连续变化。
  • 穿过烟雾进入仪器的光线只有明暗之分,明暗界限由仪器灵敏度决定。

μ ∼ \mu \sim μ 仪器灵敏度,当 I / I 0 < 1 − μ I/I_0 < 1 - \mu I/I0<1μ,观测结果为暗。

设光源在 z = − ∞ z = -\infty z=,仪器在 z = ∞ z = \infty z=,则观测到的明暗界限为:

e − α ∫ − ∞ ∞ C ( x , y , z , t ) d z = 1 − μ e^{-\alpha \int_{-\infty}^{\infty} C(x,y,z,t) dz} = 1 - \mu eαC(x,y,z,t)dz=1μ ∼ \sim 不透光区域边界

求解方程

C ( x , y , z , t ) = Q ( 4 π k t ) 3 / 2 e − x 2 + y 2 + z 2 4 k t C(x, y, z, t) = \frac{Q}{(4 \pi kt)^{3/2}} e^{-\frac{x^2 + y^2 + z^2}{4 kt}} C(x,y,z,t)=(4πkt)3/2Qe4ktx2+y2+z2

⇒ ∫ − ∞ ∞ C ( x , y , z , t ) d z = 1 α ln ⁡ 1 1 − μ ≈ μ α ( μ  很小 ) \Rightarrow \int_{-\infty}^{\infty} C(x,y,z,t) dz = \frac{1}{\alpha} \ln \frac{1}{1-\mu} \approx \frac{\mu}{\alpha} \quad (\mu \text{ 很小}) C(x,y,z,t)dz=α1ln1μ1αμ(μ 很小)

∫ − ∞ ∞ C ( x , y , z , t ) d z = Q 4 π k t e − x 2 + y 2 4 k t \quad \int_{-\infty}^{\infty} C(x,y,z,t) dz = \frac{Q}{4 \pi kt} e^{-\frac{x^2 + y^2}{4kt}} C(x,y,z,t)dz=4πktQe4ktx2+y2

Q 4 π k t e − x 2 + y 2 4 k t = μ α \frac{Q}{4 \pi kt} e^{-\frac{x^2 + y^2}{4 kt}} = \frac{\mu}{\alpha} 4πktQe4ktx2+y2=αμ

不透光区域边界半径:

r ( t ) = 4 k t ln ⁡ α Q 4 π k μ t r(t) = \sqrt{4 kt \ln \frac{\alpha Q}{4 \pi k \mu t}} r(t)=4ktln4πkμtαQ

结果分析

r ( t ) = 4 k t ln ⁡ α Q 4 π k μ t r(t) = \sqrt{4 kt \ln \frac{\alpha Q}{4 \pi k \mu t}} r(t)=4ktln4πkμtαQ

t = t 1 = α Q 4 π k μ e , r = r m = Q π μ e ( 最大值 ) t = t_1 = \frac{\alpha Q}{4 \pi k \mu e}, \quad r = r_m = \sqrt{\frac{Q}{\pi \mu e}} \quad (\text{最大值}) t=t1=4πkμeαQ,r=rm=πμeQ (最大值)

t = t 2 = α Q 4 π k μ , r = 0 t = t_2 = \frac{\alpha Q}{4 \pi k \mu}, \quad r = 0 t=t2=4πkμαQ,r=0

α ↑ , Q ↑ , μ ↓ ⇒ t 1 ↑ , r m ↑ \alpha \uparrow, Q \uparrow, \mu \downarrow \Rightarrow t_1 \uparrow, r_m \uparrow α,Q,μ↓⇒t1,rm

k ↓ ⇒ t 1 ↑ k \downarrow \Rightarrow t_1 \uparrow k↓⇒t1

在这里插入图片描述

参数数值
最大不透光区域边界半径 r m a x r_{max} rmax3.4220
边界达到最大值的时间 t 1 t_1 t12.9275
烟雾完全消失的时间 t 2 t_2 t27.9577

观测到不透光区域边界达到最大的时刻 t 1 t_1 t1, 可以预报烟雾消失的时刻 t 2 t_2 t2

  1. 蓝色曲线 r ( t ) = 4 k t ln ⁡ ( α Q 4 π k μ t ) r(t) = \sqrt{4kt \ln \left(\frac{\alpha Q}{4\pi k \mu t}\right)} r(t)=4ktln(4πkμtαQ) :
    • 该曲线表示不透光区域的边界半径 r ( t ) r(t) r(t)随时间 $ t$ 的变化。
    • 在爆炸初始时刻,烟雾边界迅速扩散,边界半径增大。
    • 随着时间的推移,边界半径达到一个最大值,然后开始减小,直到最后烟雾完全消失。
  2. 红色虚线(垂直线) t 1 = α Q 4 π k μ e t_1 = \frac{\alpha Q}{4 \pi k \mu e} t1=4πkμeαQ:
    • 这条红色虚线表示边界半径达到最大值的时间 t 1 t_1 t1
    • 从图中可以看到,边界半径在此时刻 t 1 t_1 t1达到了峰值。
  3. 绿色虚线(水平线) r m = Q π μ e r_m = \sqrt{\frac{Q}{\pi \mu e}} rm=πμeQ :
    • 这条绿色虚线表示不透光区域边界的最大半径 $ r_m$。
    • 该半径在 t 1 t_1 t1 时刻达到,这是烟雾扩散过程中的最大范围。
  4. 蓝色虚线(垂直线) t 2 = α Q 4 π k μ t_2 = \frac{\alpha Q}{4 \pi k \mu} t2=4πkμαQ:
    • 这条蓝色虚线表示烟雾完全消失的时间 $t_2 $。
    • 此时,边界半径 r ( t ) r(t) r(t)已经缩小至零,意味着烟雾已经完全消散。

代码

import numpy as np
import matplotlib.pyplot as plt

# 定义常数(这些常数可以根据特定情况进行设置)
k = 1.0  # 扩散系数
alpha = 1.0  # 参数alpha
Q = 1.0  # 炮弹释放的烟雾总量
mu = 0.01  # 仪器灵敏度
pi = np.pi

# 定义不透光区域边界半径 r(t)
def r(t):
    return np.sqrt(4 * k * t * np.log(alpha * Q / (4 * pi * k * mu * t)))

# 计算最大边界半径和相关时间点
t1 = alpha * Q / (4 * pi * k * mu * np.e)
r_max = np.sqrt(Q / (pi * mu * np.e))
t2 = alpha * Q / (4 * pi * k * mu)

# 时间范围
t = np.linspace(0.1, t2 * 1.5, 500)  # 从小于 t2 的时间开始

# 绘制不透光区域边界随时间的变化
plt.figure(figsize=(10, 6))
plt.plot(t, r(t), label=r'$r(t) = \sqrt{4 kt **\l**n **\f**rac{**\a**lpha Q}{4 **\p**i k **\m**u t}}$')
plt.axvline(t1, color='r', linestyle='--', label=r'$t_1 = **\f**rac{**\a**lpha Q}{4 **\p**i k **\m**u e}$')
plt.axhline(r_max, color='g', linestyle='--', label=r'$r_m = \sqrt{**\f**rac{Q}{**\p**i **\m**u e}}$')
plt.axvline(t2, color='b', linestyle='--', label=r'$t_2 = **\f**rac{**\a**lpha Q}{4 **\p**i k **\m**u}$')
plt.xlabel('Time t')
plt.ylabel('Boundary Radius r(t)')
plt.title('Smoke Diffusion and Dissipation Model')
plt.legend()
plt.grid(True)
plt.show()

# 输出最大边界半径和相关时间点
print(f"最大不透光区域边界半径 r_max = {r_max:.4f}")
print(f"边界达到最大值的时间 t1 = {t1:.4f}")
print(f"烟雾完全消失的时间 t2 = {t2:.4f}")
  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值