从零开始学数据分析之——《微积分》第八章 微分方程与差分方程(完结篇)

8.1 微分方程的基本概念

定义8.1.1 含有未知函数的导数或微分的方程,称为微分方程。

未知函数为一元函数的微分方程,称为常微分方程。

未知函数为多元函数,从而含有偏导数的微分方程,称为偏微分方程。

定义8.1.2 微分方程中出现的未知函数导数的最高阶数,称为微分方程的阶。

定义8.1.3 如果一个函数代入微分方程后,方程两端恒相等,则称这个函数为微分方程的解。

如果微分方程的解中含有任意常数,且所含独立的任意常数的个数等于微分方程的阶数,则称此解为微分方程的通解。在通解中给予任意常数以确定的值而得到的解,称为特解。由通解确定特解的条件称为初始条件。求出微分方程解的过程称为解微分方程。

8.2 一阶微分方程

8.2.1 可分离变量的一阶微分方程

形如 

                        M(x)dx=N(y)dy     (1)

 的微分方程,称为变量已分离的微分方程。等式(1)两边同时积分,得

                        \int M(x)dx=\int N(y)dy+c.  (2)

其中c为任意常数。式(2)就是微分方程(1)的通解表达式。

注意,这里把\int M(x)dx,\int N(y)dy分别理解为M(x),N(y)的某一个原函数,而把积分常数c单独写出来。

形如

                        \frac{dy}{dx}=f(x)g(y)   (3)

或                M_1(x)M_2(y)dx=N_1(x)N_2(x)dy  (4)

的微分方程,称为可分离变量的微分方程。因为经过简单的代数运算,式(3)或式(4)可化为

                        \frac{dy}{g(y)}=f(x)dx (g(y)\neq 0)

或                \frac{M_1(x)}{N_1(x)}dx=\frac{N_2(y)}{M_2(y)}dy (N_1(x)\neq 0,M_2(y)\neq 0)

这样,变量就“分离”开来了,两边积分即可得到(3)或(4)的通解。

8.2.2 齐次微分方程

形如

                        \frac{dy}{dx}=f(\frac{y}{x})    (1)

的微分方程,称为齐次微分方程。

接其次微分方程(1)的常用方法是通过变量变换将其化为可分离变量的微分方程,然后再求解。  

8.2.3 一阶线性微分方程

形如

                        y'+p(x)y=q(x)   (1)

的微分方程,称为一阶线性微分方程。当q(x)=0时,式(1)变为

                        y'+p(x)y=0     (2)

称为一阶线性齐次微分方程。当q(x)\neq 0 时,式(1)称为一阶线性非齐次微分方程。

1. 齐次方程的通解

                        y=ce^{-\int p(x)dx}

2.非齐次方程的通解

                        y=e^{-\int p(x)dx}(\int q(x)e^{\int p(x)dx}+c)

8.2.4 伯努利方程

形如

                        y'+p(x)y=q(x)y^{\alpha } (\alpha \neq 0,1)

的微分方程称为伯努利方程。

8.3 高阶微分方程

二阶或二阶以上的微分方程称为高阶微分方程。n阶微分方程的一般形式是

                        F(x,y,y',y'',\cdot \cdot \cdot ,y^{(n)})=0.

8.3.1 可降阶的高阶微分方程

1.y^{\left ( n \right )}=f(x)

                        y^{\left ( n \right )}=f(x)   (1)

                         y^{\left ( n-1 \right )}=\int f(x)dx+c_1

接连阶分n次,变得方程(1)的含有n个任意常数的通解。

2.y^{\left ( n \right )}=f(x,y^{(n-1)})

通解:   y^{(n-1)}=\varphi (x,c_1)

3.y''=f(y,y')

通解: x=\int \frac{dy}{\varphi (y,c_1)}+c_2

8.3.2 二阶常系数线性微分方程

1.齐次方程的通解

                y=c_1y_1+c_2y_2  (c_1,c_2为任意常数)

2.非齐次方程的通解

                y=y^{*}+\overline{y}.

8.4 差分方程

8.4.1 差分

定义8.4.1 设有函数y_t=y(t),称改变量y_{t+1}-y_t为函数y_t在点t的一阶差分,简称差分,记作\Delta y,即

                        \Delta y_t=y_{t+1}-y_t=y(t+1)-y(t) (t=0,1,2,\cdot \cdot \cdot \cdot ).

函数y_t=y(t)在点t的一阶差分的差分称为该函数在点t的二阶差分,记作\Delta ^{2}y_t,即

                        \Delta ^{2}y_t=\Delta \left ( \Delta y_t \right )=\Delta y_{t+1}-\Delta y_{t}=(y_{t+2}-y_{t+1})-(y_{t+1}-y_t)=y_{t+2}-2y_{t+1}+y_t.

类似地,可定义三阶差分、四阶差分、···。一般地,函数y_t的n-1阶差分的差分称为n阶差分,记为\Delta ^{n}y_t,即

                        \Delta ^{n}y_t=\Delta (\Delta ^{n-1}y_t)=\Delta ^{n-1}y_{t+1}-\Delta ^{n-1}y_t=\sum_{k=0}^{n}(-1)C^{k}_ny_{n+t-k}.

通常把二阶及二阶以上的差分称为高阶差分。

有定义可知,差分具有以下性质:

(1)\Delta c=0(c为常数)

(2)\Delta (cy_t)=c\Delta y_t(c为常数)

(3)\Delta (x_t+y_t)=\Delta x_t+\Delta y_t

(4)\Delta (x_ty_t)=x_t\Delta y_t+y_{t+1}\Delta x_t

(5)\Delta \left ( \frac{x_t}{y_t} \right )=\frac{y_t\Delta x_t-x_t\Delta y_t}{y_ty_{t+1}}(y_t\neq 0)

8.4.2 差分方程的一般概念

定义8.4.2 含有未知函数的差分或未知函数若干个时期的值的方程称为差分方程。方程中差分的阶数或时期的最大差距称为差分方程的阶。

若差分方程中所含未知函数及未知函数的各阶差分均为一次的,则称该差分方程为线性差分方程。

8.4.3 一阶常系数线性差分方程

 

 

 

 

 

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值