大牛推荐:AI、机器学习、深度学习必看7大入门视频

转载 2017年12月20日 00:00:00

0?wx_fmt=gif&wxfrom=5&wx_lazy=1

作者:AI100

来源:AI科技大本营


这年头,谈话间,不夹杂点“人工智能”,“机器学习”,“深度学习”这样的字眼,就跟九十年代追不上互联网的时髦一样——丢份!


可是呢,说白了,真正懂行的没几个,真的没几个。


几个月前,我也属于多少能跟风提两嘴,但当真不明白这人工智能到底根子上是啥玩意儿的吃瓜群众。谁要是跟我提里面的技术细节,我更是崩溃:shut up。


不过,几段视频彻底改变了我的认识,它里面用了极其通俗易懂的语言和卡通画面,让我明白了人工智能、机器学习里面到底是什么鬼,特别有意思。在这个基础上,我在这个领域开始真正成长了。


如果你也跟我一样,不懂机器学习,但又想知道点干东西,却又不想特别费劲,那么不妨看看我分享的这些视频,说不定你也能在几个月后成为半个行家哦。


在这里,我会根据我的经验,把这些视频分为三类,第一类是入门款,第二是基础款,第三就是进阶款咯,我保证,每类都很轻松,不会让你太费劲的。


在此,小小说明一下,由于微信的限制,一篇文章只能植入三个视频,因此别的视频只能附上链接,但在微信条件下,这个链接不能直接打开。



 入门款——基础介绍


在推荐入门款视频之前,先叨叨几句,为了让你能结合起来看得更明白。(小白的重点学习专区


人工智能的目的是什么呢?


答:让机器表现得更像人类,甚至在某些技能上超越人类。


为了达到这个目的,人工智能必须“会思考”,而它的思考便涵盖了以智能方式解决计算难题的技术和方法。听起来有点抽象。举几个例子:搜索--找出两城之间最快的往返,规划--让机器人自动导航并达成给定目标......


当然,人工智能的能力到底强不强,得看两个条件:算法和计算能力。


算法到底多牛逼(你可以理解为机器思考问题的方式有多牛逼),计算能力有多高(你可以理解为为机器思考提供的供血、蛋白质等后勤保障),这两个条件直接决定了你所搞的人工智能到底有多强。


我们人类只要把算法和计算能力保证了,别的就不用管了,机器它自己就会学习。


机器是怎么自主学习呢?


答:通过学习已有的标注数据来解决问题,而并不需要把规则硬编码到算法中。


还是太抽象,让我举例来说明吧。


比如,开发一个系统,让这个系统来识别图片中的猫和狗。为了实现,我们只须往已设定好的算法中,放入大量猫和狗的图片,就可以睡觉去了。等机器看完这海量的图片,它自己就认得,什么是猫,什么狗。


那什么又是深度学习呢?


深度学习属于机器学习,不过更复杂。它类似给机器装了一个大脑,这个大脑里也有由大量的神经元组成的多层系统,可以通过大量的数据训练来处理复杂的机器学习任务(比如上文提到的猫、狗图像识别)。


为什么深度学习突然就火爆起来了呢?


因为它需要的两个软硬件都被满足了:硬件方面,GPU等变得功能强大,且价格大幅下降;软件方面,用于训练模型的各类数据比以往大量增多了。


好了,叨叨完这么些信息,现在让我们开启入门款视频之旅吧。


人工智能、深度学习和机器学习:入门介绍(Andreessen Horowitz)


视频地址:https://v.qq.com/x/page/g0509xkntj4.html

640?wx_fmt=jpeg

该视频是关于人工智能发展史 & 深度学习简介


机器学习简介(Udacity)


视频地址:https://v.qq.com/x/page/w0509d4lwag.html


640?wx_fmt=jpeg

(稍微技术一点的)机器学习简短讲解


人工智能是新型电力(吴恩达)


视频地址:https://v.qq.com/x/page/b05090crw4r.html


640?wx_fmt=jpeg

吴恩达讲解人工智能/机器学习的现状、相关应用及管理措施


吴恩达在 Youtube 上还发了很多有趣的视频,他在 Coursera 上还有一个免费的机器学习课程,不过技术性/理论性极强。有需要的童鞋可以自己搜搜。



成长款——深入学习


如果你还想深入学习相关的技术细节,可以观看 Youtube 上的 Deep Learning Simplified 系列视频与 Facebook 解释机器学习/深度学习的视频。


人工智能揭秘(Facebook):



Yann LeCun 介绍人工智能



Yann LeCun 介绍深度学习


对于技术细节的更多讲解,可以查看 Facebook 视频的官方页面。


简谈深度学习


Deep Learning Simplified - 入门篇


想要查看该系列的所有视频,可前往其 Youtube 频道。



进阶款——打造你自己的神经网络


如果想继续往前,学会并构建出自己的神经网络,你需要:


1.学会 Python 编程(可以用 Codecademy、Codeschool 或 Udacity 的课程)


2.了解 Google 的 TensorFlow 框架或 Keras,以找出更简单的模型实现方法;然后学习 mnist 新手教程,对机器学习有一个大体印象;强烈推荐下面这个视频哦 。


视频地址:

https://v.qq.com/x/page/u0509ksey7o.html


640?wx_fmt=jpeg

5分钟x学会Tensorflow


3.此外,建议学一下 Google 在 Udacity 上的深度学习免费课程。自己搜一搜。


我的分享就到这里了,除了这些,如果你也有好的视频资源,欢迎在后台留言推荐哦。


640?wx_fmt=jpeg0?wx_fmt=gif

640?wx_fmt=png

点击下方“阅读原文”下载【科技头条】↓↓↓

2016年不可错过的21个深度学习视频、教程和课程

几年之前,深度学习还是机器学习里面一个不太受人关注的领域。随着神经网络和大数据的出现,很多复杂任务的实现已经成为可能。 2009年时,深度学习还是一个新兴领域,只有少数人认为这是一个值得研究的领...
  • liuhongyue
  • liuhongyue
  • 2017-03-23 14:45:43
  • 2773

机器学习极好的入门学习视频推荐

首先说明本人最早看的机器学习视频是吴恩达的机器学习后来发现并不适合我。如果你以前了解过一些算法,不妨看看我以下推荐的视频,对于一点都不了解机器学习的小白,那就更要看我推荐的视频了,当然吴恩达的机器学习...
  • weixin_39449570
  • weixin_39449570
  • 2017-11-25 18:02:38
  • 994

看完吴恩达(Andrew Ng)机器学习视频的感受

最近觉得机器学习有点火,就上网找了找,搜了搜,看看机器学习是个什么东东,看到大部分的博客啊,知乎上都说入门的话,强烈推荐吴恩达的机器学习,开始以为是在网易公开课上看,但是后来搜到了一个在线学习网站--...
  • tiantangderen
  • tiantangderen
  • 2018-01-14 20:20:27
  • 625

机器学习推荐书籍及视频

机器学习推荐书籍及视频 一、推荐书籍: 1.概率论与数理统计(第4版) 作者:盛骤 (编者), 谢式千 (编者), 潘承毅 (编者) 2. 统计学习方法 作者:李航 ...
  • u013473512
  • u013473512
  • 2017-07-02 09:17:49
  • 12455

100个最受欢迎的机器学习课程视频

原文地址:http://blog.videolectures.net/100-most-popular-machine-learning-talks-at-videolectures-net/ ...
  • Together_CZ
  • Together_CZ
  • 2017-03-24 22:45:17
  • 1157

最全的机器学习&深度学习入门视频课程集

转载自: “人工智能A7论坛aqinet.cn”  资源介绍 链接:http://pan.baidu.com/s/1kV6nWJP 密码:ryfd     链接:htt...
  • ldily110
  • ldily110
  • 2016-11-08 20:35:09
  • 21392

开发者入门必读:最值得看的十大机器学习公开课

[转] http://www.leiphone.com/news/201701/0milWCyQO4ZbBvuW.html 导语:入门机器学习不知道从哪着手?看这篇就够了。 ...
  • xiangz_csdn
  • xiangz_csdn
  • 2017-01-17 09:21:27
  • 17903

最值得看的十大机器学习公开课

转自:https://www.leiphone.com/news/201701/0milWCyQO4ZbBvuW.html 导语:入门机器学习不知道从哪着手?看这篇就够了。 ...
  • yushupan
  • yushupan
  • 2017-11-20 15:22:15
  • 472

视频 | 6分钟了解人工智能与机器学习

视频来源 | HubSpot6分钟的动画视频:近期热文长文 | LSTM和循环神经网络基础教程(PDF下载)今日头条推荐算法详解(PDF下载)MIT 20l8年“十大突破科技”揭晓,百度成官方唯一评定...
  • Mbx8X9u
  • Mbx8X9u
  • 2018-03-02 00:00:00
  • 211

如何理解区分"人工智能"、“机器学习”、“深度学习”三大巨星

如何理解区分"人工智能"、“机器学习”、“深度学习”三大巨星
  • lzrtutu
  • lzrtutu
  • 2017-10-20 15:40:28
  • 578
收藏助手
不良信息举报
您举报文章:大牛推荐:AI、机器学习、深度学习必看7大入门视频
举报原因:
原因补充:

(最多只允许输入30个字)