问题
乍一看”蒙提霍尔”这个名字可能感觉陌生,但其实问题的内容大家或多或少应该都听闻过,在此简单复述一下:
有三扇门,其中一扇门背后有奖励,另外两扇门后面则没有,现在你先随机选择其中一扇门,然后把余下两扇门中没有奖励的那扇门打开,并给你一次重现选择的机会,你是否应该改变最初的选择?
文字描述的可能还是有些绕路,使用符号化形式的实例再表述一遍 :)
三扇门 A, B, C, 你先选择了 A, 然后把 B, C 中没有奖励的 B 打开,这时你是否应该放弃最初的选择(A),转而选择 C ?
迷思
这个问题容易让人困惑,你可能会维持最初选择,因为:
最初选择时的选中(奖励)概率为1/3,后面流程并没有影响这个概率,所以可以维持最初选择(因为剩下那扇门的选中概率也是1/3)
最初选择时的选中(奖励)概率为1/3,后面去除了一扇门,所以选中概率变为了1/2,所以可以维持最初选择(因为剩下那扇门的选中概率也是1/2)
应该相信第一感觉(?!)
但可惜这些都是错误答案,正确答案是你应该转换选择!
真相
这个问题有很多正确的理解方法,譬如:
最初选择时的选中(奖励)概率为1/3,后面如果我们转化选择的话,选中概率即为1 - 1/3 = 2/3(即最初选择选错的概率)
转换选择概念上等于同时选择了两扇门,所以转换选择的选中概率为2 * 1/3 = 2/3
另外的还有一种帮助我们思考的理解方法:
假设现在有100扇门,你选择了其中一扇,然后我们把余下的没有奖励的98扇门打开,这时你要转换选择吗?
以上这些理解方法都需要一些巧思,另一种相对朴素的理解(计算)方式则是直接从概率的定义出发:
我们列举出该问题所有可能的组合方式(总样本数量S),然后找出其中维持初选并且选中(奖励)的方式(样本数量A),相关概率即可通过下面公式计算:
P(维持选择并选中) = A / S
P(改变选择并选中) = 1 - A / S
首先我们来计算总样本数量S:
- 首先我们随机一扇奖励门(门后有奖励),这有3种选择
- 接着我们随机一扇最初选择的门,这也有3种选择
- 最后我们随机最后会打开的门,这有2种情况
综上, S = 3 * 3 * 2 = 18
(注意,这里有个晦涩的计数问题,你可能会问:如果第二步中我们没有随机到奖励门,那么第三步中可以选择打开的门便只有1种,而不是2种,所以我们不能用这种方式计算总样本数量.
这种说法其实是混淆了总样本数量和总排列组合数量:对于总排列组合数量而言,确实不能这样计算,但是对于总样本数量而言,其实其中是包括部分重复的排列组合的!
也许我们可以这么理解:最后选择打开的门时仍然看做随机选取,只是在随机到奖励门的时候主动变更到非奖励门,这样可以随机的门的种类仍然可以看做2种)
然后我们来计算样本数量A(维持初选并选中的方式):
- 首先我们随机一扇奖励门(门后有奖励),这有3种选择
- 接着我们随机一扇最初选择的门,这必须是奖励门(这样才能保证维持初选时可以选中奖励),所以只有1种选择
- 最后我们随机最后会打开的门,这有2种情况
综上, A = 3 * 1 * 2 = 6
有了 S 和 A ,我们便可以计算我们想要的概率了:
P(维持选择并选中) = A / S = 6 / 18 = 1 / 3
P(改变选择并选中) = 1 - A / S = 1 - 6 / 18 = 2 / 3