MATH2036 COMPLEX FUNCTIONS FINAL EXAM A LEVEL 2 MODULE 2021-2022

Java Python MATH2036

COMPLEX FUNCTIONS

FINAL EXAM

A LEVEL 2 MODULE, 2021-2022

Problem 1.

(a) A set A ⊂ C is called convex if ∀x, y ∈ A and ∀λ ∈ [0, 1] [12 marks]

(1 − λ)x + λy ∈ A.

Show that if domains An, n = 1, 2, . . . are convex and ∩∞n=1An = ∅ then the set ∪∞n=1An is a starshape-domain.

(b) Let the function f be given by

f(x, y) = x(x 2 − 3y 2 − 2y) + i(3x 2 y − y 3 + x 2 − y 2 ).

(i) Apply Cauchy-Riemann theorem to show that the function f is an entire function. [6 marks]

(ii) Use your computations from (i) to compute f 0 (z) and f(z) as functions of z. [7 marks]

Problem 2.

(a) Let γ = γ1 ∪ γ2 be the piecewise smooth contour, with γ1 being the straight line segment from 0 to i, and γ2 being the arc of the circle centered at 0 from i to −1 counter-clockwise. Evaluate the integral

and write your final answer in the form. A + Bi. [12 marks]

(b) Consider the series

(i) Determine the radius of convergence. [4 marks]

(ii) What is the value f 000 (0)? [4 marks]

(iii) Determine the following integral once counter-clockwise around the circle [5 marks] MATH2036 COMPLEX FUNCTIONS FINAL EXAM A LEVEL 2 MODULE, 2021-2022

Problem 3.

(a) Consider the function [10 marks]

and determine the following:

(i) the Laurent series of f in {3 < |z| < 5},

(ii) the Laurent series of f in {0 < | z − 3| < 2}.

(b) With f given as in (a) determine the following integrals (once counter-clockwise around the given circle). [9 marks]

(i)

(ii)

(iii)

(c) For f given as in (a) and [6 marks]

show that |I| ≤ 3/16π.

Problem 4.

(a) Let

(i) Determine the location of the singularities of f and the residues at each of the singularities. [6 marks]

(ii) For R > 0 let σR denote the straight line segment connecting −R and R, and let γR denote the semicircle connecting R with −R via the point iR. Let ΓR be the closed PSC that consists of σR followed by γR. Determine the values of R > 0 for which the integral [6 marks]

is defined and compute the value of IR whenever it is defined.

(iii) Show that [7 marks]

and determine the value of

(b) Show that if f is analytic in a domain D satisfying [6 marks]

then f must be a constant function         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值