Mplus教程:如何做潜在类别分析LCA

本文提供了一个详细的Mplus软件进行潜在类别分析的教程。通过一个关于饮酒行为的数据集,解释如何分析并解读结果。Mplus不仅能输出个体在每个条目上的响应概率,还能绘制图表帮助区分不同潜类别。作者展示了如何根据响应概率为潜类别命名,并介绍了Mplus的输出文件、模型比较和拟合指标。最后,提供了完整的Mplus语法示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前潜在类别分析已经给大家写的很详细了,不过都是基于R软件的,我发现一个很奇怪的地方哦,找我做潜类别的基本都不用R,找我解决R语言问题的基本都不知道潜类别是干啥的,看样子做潜变量分析还是mplus受众广泛呀,今天就给大家写一个详细的使用Mplus做潜在类别分析的教程。

依然还是用实际例子手把手教学

实例操练

假如我想了解人们的饮酒行为,我手上收集了一群大汉的饮酒行为数据,用的工具是一个9条目的饮酒行为问卷,条目如下:

1.我爱饮酒

2.我爱喝烈酒

3.我早晨爱饮酒

4.工作时间也喝酒

5.每次喝酒都喝醉

6.酒的味道真滴好

7.喝酒帮助我睡眠

8.喝酒误我事

9.经常去酒吧

上面所有条目的回答均为是否二分类,具体长下图这样:

Mplus教程:如何做潜在类别分析LCA

 

我现在要对数据做一个潜在类别分析

潜在类别给你输出的是个体选择每一个选项的条件概率,所以响应变量一定是分类变量,这儿一定要和潜在剖面分析区分开。

对于本例来说,假如你要三个潜类别,那么结果就会有不同的潜类别在每个问题上响应为yes的和响应为no的概率,我们就是通过这种概率的不同来给不同的潜类别命名的。

比如像下面这个图这样:

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号Codewar原创作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值