- 博客(7)
- 收藏
- 关注
原创 潜增长曲线模型(Latent Growth Curve Models, LGCM)
值得注意的是,斜率为0.046,比较小,p值也显示为0.067,是不显著的(p > 0.05),说明在这组数据中,随着时间的变化,自尊变化是不显著的,通过回归分析图也可见一斑。此处为0.025(p = 0.186),提示个体的初始水平与斜率存正相关,即初始自尊水平教高的个体,自尊上升的速度更快,但是没通过显著性检验(p > 0.05)。LGCM不仅可以估计变量的初始水平和变化速率,还可以进一步估计不同个体在初始水平和变化速率上的差异,以及初始水平和变化速率的关系,接下来,就是LGCM的主要指标了。
2024-06-11 20:03:58
4640
2
原创 潜在类别分析-实操应用
本文根据LCA的结果又构建了预测模型,依据变量特征区分儿童ARDS的两种分型,且预测模型具有良好的效能,使LCA的结果更加贴近临床实际,具有较好的实用性。此外本文的行文逻辑严谨,变量、模型的选择皆有迹可循。在此表中可以见得,BIC指数最低的为4类别,Entropy值最高的为3类别,然而,在VLMR检验中仅有2类别的P值<0.05,证明2类别模型优于1类别,在其他类别模型之间的VLMR检验中都不能证实k+1类别优于k类别。在图表的左侧,表型 2 的标准化值较高,在图表的右侧,表型 2 的标准化值较低。
2024-06-11 19:55:58
1012
原创 潜类别模型之潜在类别分析
它将潜在的概念性变量与观测到的变量之间的关系建模为一个方程系统,并且可以同时估计观测变量之间的关系和潜变量之间的关系。简单来说,聚类分析相当于将小朋友根据相似的身高、体型、性别等特征分成不同的方队,每个方队里的小朋友看起来都是差不多的,而LCA是小朋友们根据不同的兴趣爱好,性格特点、家庭环境选择相互合适的人成为朋友。潜在类别模型(latent class model,LCM)是通过间断的潜变量即潜在类别变量来解释外显指标间的关联,使外显指标间的关联通过潜在类别变量来估计,进而维持其局部独立性的统计方法。
2024-06-11 19:51:40
1735
原创 项目反应理论只知道参数型?不如来看看Mokken模型?
如果对统计分析方法稍微了解的友友,应该都知道统计分析方法对于不同的数据分布形态,有相应的处理方法,其中最为典型的就是参数检验与非参数检验,以最简单的独立样本t检验为例,它对应的非参数检验就是Mann-Whitney U检验。MSA有对应的R包mokken帮助我们实现,其中也给了一些示例数据集,今天我们使用的数据集是acl,这是433个学生对荷兰版形容词清单的218个条目进行的作答,每个问题是一个形容词,有五个有序的答案类别(0=完全不同意,1=不同意,2=既不同意也不反对,3=同意,4=完全同意)。
2024-06-11 19:41:57
1384
原创 潜类别模型之潜在类别分析
它将潜在的概念性变量与观测到的变量之间的关系建模为一个方程系统,并且可以同时估计观测变量之间的关系和潜变量之间的关系。简单来说,聚类分析相当于将小朋友根据相似的身高、体型、性别等特征分成不同的方队,每个方队里的小朋友看起来都是差不多的,而LCA是小朋友们根据不同的兴趣爱好,性格特点、家庭环境选择相互合适的人成为朋友。潜在类别模型(latent class model,LCM)是通过间断的潜变量即潜在类别变量来解释外显指标间的关联,使外显指标间的关联通过潜在类别变量来估计,进而维持其局部独立性的统计方法。
2024-05-20 19:39:58
6182
1
原创 你见过有调节的网络分析吗?保姆级教程!!!
因此,可以使用另一种称为节点智能回归的方法(Epskamp et al., 2018),该方法基于一种称为邻域选择(neighborhood selection)的结构学习图论方法,并需要通过一系列单变量回归模型来估计网络结构。在本节中,我们系统回顾了横断的MNMs的基本分析步骤。在实例数据只包含较少的变量,但在我们的实际分析中,经常会面临网络中包含几十个节点的情况。需要注意的是,β12和β21的符号总是相同的,当且仅当两个斜率参数以相同的协变量为条件(例如,X3作为两个模型中的协变量),并且n > p。
2024-05-20 18:45:45
2202
2
原创 纵向数据分析还在做交叉滞后?不如来看看这个——k-means designed to work specifically on longitudinal data
目前在教育学和心理学的研究中出现了两种不同的观点,以变量为中心的观点(Variable-centred)提倡探究变量与变量之间的关系,例如很多横断面研究测量某个时刻参与率与成绩之间的关系。而以事件为中心的观点(event-centred)则认为学习不是一个静态的过程,参与率和学习成绩会随着时间发生动态变化,探索学习在特定时间点的输入和输出之间的因果关系是没有意义的。因此研究者需要在动态的时间变化中捕捉变量之间的联系。
2024-05-17 17:33:33
2817
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人