R机器学习:重复抽样在机器学习模型建立过程中的地位理解

文章讨论了在机器学习项目中如何正确评估模型性能,强调测试集只能用于最终模型评估且不应过度使用。介绍了过拟合的概念,以及线性回归和随机森林模型在训练集和测试集上的不同表现。文章推荐使用交叉验证和自助抽样等重复抽样方法来选择最佳模型,以提高模型的泛化能力和避免过拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在做机器学习项目的时候,一开始我们会将数据集分为训练集和测试集,要记住测试集只能用一次,只能用来评估最终最好的模型。如果你反复去使用测试集,反复测试后从里面挑最好的,你就是在耍流氓。

建模过程中肯定有模型调整,必然涉及到模型挑选的问题,当过程中我需要做很多个模型时,问题来了,如果我不去评估我怎么知道哪一个模型是最好的?

Typically we can’t decide on which final model to use with the test set before first assessing model performance. There is a gap between our need to measure performance reliably and the data splits (training and testing) we have available.

想想在利用测试集之前,怎么也得加上一个评估过程,帮助我们确定,到底哪个模型才是最好的,才是值得最终被用到测试集上的。

这个过程就涉及到重复抽样了resampling!

Resampling methods, such as cross-validation and the bootstrap, are empirical simulation systems. They create a series of data sets similar to the training/testing split

首先理解过拟合

写重复抽样前我们先回顾过拟合的概念,数据划分后,我们会在训练集中训练好模型,怎么评估这个模型?很自然的我可以想到,就将模型用在训练集中,将真实值和预测值对比不就

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

公众号Codewar原创作者

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值