中介本身就是回归,基本上我看到的很多的调查性研究中在中介分析的方法部分都不会去提混杂,都是默认一个三角形画好,中介关系就算过去了,这里面默认的逻辑就是前两步回归中的混杂是一样的,计算中介效应的时候就自动消掉了。
但是,实际上对不对,还是有待具体分析的:
Traditional, non-instrumental variable methods for mediation analysis experience a number of methodological difficulties, including bias due to confounding between an exposure, mediator and outcome and measurement error
孟德尔随机化作为一个天然的免去混杂的方法,和中介结合,整个中介又变得更纯净了,是一种更加值得推崇的中介做法,也是孟德尔随机化研究的必要的延申。
今天给大家介绍孟德尔随机化中介分析的两个方法multivariable MR (MVMR) and two-step MR
先回顾中介作用
中介分析的基本的概念,就是大家熟悉的三角形:
c是总效应,加上中介变量后,A*B是间接效应,C'是直接效应,有总效应=间接效应+直接效应。
上图中如果总效应,直接效应和间接效应方向都相同的情况下,我们还可以报告中介效应比例,为间接效应比上总效应。
上面的图中的中介效应成立依赖几个假设:
首先就是没有混杂,包括变量之间没有混杂(或者像前面写的直