接地气讲解决策树算法的原理

本文介绍了决策树算法的基本原理,包括信息论中的熵作为决策选择的衡量标准,以及ID3算法的构建过程。同时讨论了信息增益的概念和如何通过预剪枝减少过拟合。文章还提到了集成学习中的Bagging和Boosting方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

76c10fde5b6f125474fc6ccc70b896ed.png

来源:机器学习杂货店‍‍‍‍‍
本文约1300字,建议阅读7分钟
本文为你介绍决策树算法的原理。

决策树()是一类很常见很经典的机器学习算法,既可以作为分类算法也可以作为回归算法。同时也适合许多集成算法,如, ,以后会逐一介绍。本篇介绍一下决策树算法的原理。❞

决策树算法不像前面介绍的SVM那样,散发着浓厚的数学气味。这个算法还是比较接地气的。

信息论基础

23cbaad92f7c5a6989a99a1af037295a.jpeg 这个语法结构大家应该不陌生。怎样准确地定量选择  后面的条件,也就是要找到一个性能指标来衡量这个条件的好坏。(就像SVM中引入了来衡量一条直线的好坏)。

70年代,一个名为昆兰的大牛找到了信息论中的「熵」来度量决策树的决策选择过程。注意,信息论中的熵是香农提出的。昆兰只是将熵应用于决策树的人。

熵度量了事物的不确定性(可以联想化学里的熵,混乱程度),越不确定的事物,它的熵就越大。具体的,随机变量X的熵的表达式如下:

决策树构造

决策树的组成:

1. 根节点:第一个选择点

2. 非叶子节点与分支:中间过程

3. 叶子节点:最终的决策结果

9817c4d32f85f09e4125a85979ddb304.jpeg就像这张图展示的,第一个节点就是根节点,绿色的代表  也就是叶子节点,其它的节点也就是非叶子节点(用于决策),也就是 。

那么如何构造决策树呢?

「第一步,选择根节点」。

问题来了,特征不唯一,选哪一个作根节点最优?

这就涉及到了衡量标准,一般而言,随着划分过程不断进行,我们希望节点的熵能够迅速地降低。因为随机变量的熵越大,随机变量的不确定性越大,代表纯度越低。所以希望节点的熵能够迅速降低,使得纯度不断增加。所以以「信息增益」作为衡量标准。

引入一个信息增益( )的概念。

「定义」:特征  对训练数据集  的信息增益 ,定义为集合  的经验熵  与特征  给定条件下  的经验条件熵 之差,即

信息增益也就度量了熵降低的程度。以信息增益作为衡量标准的算法被称为ID3算法。

「第二步,选择子节点」。

依然是采用信息增益的标准进行选择。

「第三步,何时停止」。

其实这一步就涉及到剪枝,下文详解。

如果对这些概念还是有点模糊,可以结合下面的实例再思考思考。

实例

b37d7e57392efbcab49d71ce30f06145.jpeg这是数据(14天的打球情况),有四种环境特征(outlook,humidity),最后一列(play)代表最后有没有出去打球。

「首先,选择根节点」。一共有四个特征,所以根节点的选择有四种。

dfb01e9586253d6590f98bcedacfdaba.jpeg

在我们的原始数据(14天)有9天打球,5天不大,所以此时的熵为:

接着,四个特征逐一分析,先从(天气)下手:f1c368e40f93a0b88d8568ae2c1a89c8.jpeg当  时,当  时,当  时,

根据数据, 取 ,,的概率分别为,熵值计算(几个特征属性熵的加权求和):

信息增益:

同样的方式计算其它三个特征的信息增益:

四个特征中, 的增益最大,所以选择作为根节点。「接下来的子节点选择同上」

「何时停止?」上文也说了,"何时停止"涉及到剪枝。为什么要剪枝?决策树存在较大的过拟合风险,理论上,决策树可以将样本数据完全分开,但是这样就带来了非常大的过拟合风险,使得模型的泛化能力极差。

cc9f8761a14e0e5d31c227342939a8fe.jpeg剪枝和日常树木的修建是一个道理。这里介绍最常用的「预剪枝」,在构造决策树的过程中,提前停止。具体的预剪枝策略有:

  • 限制深度,例如,只构造到两层就停止。

  • 限制叶子节点个数,例如,叶子节点个数超过某个阈值就停止等等。

Ensemble Learning  

简单介绍一下集成学习()。有两种类型,

1. Bagging :训练多个分类器,最后可采取投票机制选择最终结果。这里的分类器常常是决策树。代表算法是 

2. Boosting:仍是训练多个分类器,将最后的结果加权求和,代表算法是,

这些算法在一些比赛中都是很常见的。

本篇主要介绍的ID3算法仍有一定缺陷,之后的文章会继续介绍。

编辑:tech小百科

参考目录:

https://www.bilibili.com/video/BV1Ps411V7px?p=6

https://www.cnblogs.com/pinard/p/6050306.html

https://divinerhjf.github.io/2019/05/24/shu-ju-wa-jue-jue-ce-shu/#toc-heading-8

https://zh.wikipedia.org/wiki/‍‍‍

编辑:黄继彦
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值