Sunrise at sea

Sunrise at sea

Ba Jin

I would often getup early to watch the sunrise when it was not yet quiet light and all was quietexcept for the droning of the ship engine.

    The sky was pale with a bluish blue. Soon astreak of pink dawn broke over the horizon, expanding gradually and becomingbrighter and brighter. Knowing that the sun was about to rise, I had my eyesfixed on the distant edge of the sea.

    As expected, the sun soon appeared revealinghalf of its face, which was very red but not bright. It kept rising laboriouslybit by bit as if weighted down with a heavy burden on its back until, afterbreaking through the rosy clouds; it completely emerged from the sea aglow witha lovely red. Then, before I knew it, the dark red orb began to shineblazingly, dazzling my eyes until they stung and all of a sudden lighting upthe surrounding cloud.

    Sometimes, hidden by the clouds, the sunnonetheless shed its rays straight onto the sea water, marking it difficult forme to distinguish between the sky and the sea because what I saw in front of mewas nothing but a wide expanse of brilliant light.

Sometimes, withthick layers of dark clouds hanging in the sky, the sun was hardly visible tothe naked eye. But its radiance managed to show through the dark clouds to edgethem with golden lace. Then, after gradually breaking through the tightencirclement, it came into full view and even dyed the dark douds and theseawater, I too was luminous.

    Wasn’t that a marvelous spectacle?

没有见过海上日出,也没有看过日出。曾经新年的第一道曙光,是可以看到的,只可惜估计错误,以为当天没有日出,然后就离开了。离开之后太阳便缓缓升起。可能看日出没有多神奇的一件事情,但是和着一大帮人,就像这把这件事实践一下。一起做过一件事情,一起熬过漫长的寒夜,一起等待黎明,回忆起来总是美好的。趁着年轻,有机会,定要跟朋友去看看日出。


内容概要:本文档《gee scripts.txt》记录了利用Google Earth Engine(GEE)进行遥感影像处理与分类的脚本流程。首先,对指定区域内的Landsat 5卫星图像进行了数据筛选,排除云量超过7%的影像,并应用缩放因子调整光学波段和热波段的数值。接着,基于样本数据集训练随机森林分类器,用于区分植被、水体、建筑、土壤、拜耳作物、岩石和草地等地物类型。最后,将训练好的模型应用于处理后的Landsat 5影像,生成分类结果图层,并计算混淆矩阵以评估模型准确性,同时将分类结果导出至Google Drive。 适合人群:从事地理信息系统(GIS)、遥感科学或环境监测领域的研究人员和技术人员,特别是那些希望深入了解GEE平台及其在地物分类中的应用的人士。 使用场景及目标:①从Landsat卫星获取特定时间段内的高质量影像数据;②通过预处理步骤提高影像质量,确保后续分析的有效性;③构建并训练机器学习模型以实现地物自动分类;④评估分类模型性能,保证结果可靠性;⑤将最终成果高效存储于云端平台以便进一步研究或共享。 阅读建议:由于涉及较多专业术语和技术细节,在阅读时建议先熟悉GEE平台的基本操作以及相关遥感知识,重点关注数据处理流程和分类算法的选择依据。此外,对于代码部分,可以尝试在自己的GEE环境中运行,以便更好地理解每个步骤的具体作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值