KMV模型概述
KMV模型是一种估计企业违约概率的方法。KMV基于期权定价理论的信用风险评估模型,由美国旧金山市KMV公司于1997年开发。该模型的核心思想是将企业债务视为一种期权,通过分析企业资产价值与债务价值的相对关系,计算企业违约概率(Probability of Default, PD),从而评估其信用风险,还能根据历史数据推断违约概率(Expected Default Frequency, EDF)。
KMV 是三个创始人的姓氏首字母缩写,分别代表 KMV 公司的三位创始人:Kenneth D. KimballRobert H. MertonStanley B. Vasicek这三位专家在金融风险管理领域有着卓越的贡献,KMV 模型正是基于他们的研究和开发而得名。
模型的应用
1.上市公司信用风险评估:KMV模型特别适用于上市公司,因为它利用股票市场价格信息来动态评估企业的信用风险。
2.动态风险监测:由于基于股票市场数据,模型能够及时反映企业信用状况的变化,具有前瞻性。
3.商业银行信贷风险管理:KMV模型可以帮助银行评估信贷资产的风险,优化信贷决策。
模型的优势
动态性:模型能够根据市场信息实时更新,反映企业当前的信用状况。
前瞻性:通过市场预期而非历史数据评估风险,更符合现代风险管理需求。
量化分析:提供了一种系统化的信用风险量化方法。
模型的局限性
假设条件严格:假设资产价值服从正态分布,而实际情况中企业资产价值可能呈现非正态分布。
适用范围有限:对非上市公司,由于缺乏股票市场数据,模型的应用效果可能较差。
忽略信用等级变化:模型主要关注违约概率,而对企业的信用等级变化缺乏敏感性。
KMV模型算法流程
以下是一个简化的Python代码示例,展示如何实现KMV模型的关键计算步骤:
-
估算公司资产价值和资产波动率:首先,我们需要估算公司的资产价值(V)和资产波动率(σ_V)。这通常涉及到解决一个非线性方程组,可以使用
scipy.optimize
中的fsolve
函数来解决。 -
计算违约距离(DD):违约距离是公司资产价值与违约点(D)之间的差额,除以资产波动率。
-
计算违约概率(EDF):违约概率可以通过历史数据进行拟合。KMV公司提供了违约距离与违约概率之间的映射关系。
请注意,以下代码是一个示例,实际应用中需要根据具体数据和模型参数进行调整。
import numpy as np
from scipy.optimize import fsolve
from scipy.stats import norm
# 假设我们已经有了以下数据:
equity_value = 1e9 # 股权市场价值
equity_volatility = 0.2 # 股权波动率
total_debt = 5e8 # 总负债
risk_free_rate = 0.05 # 无风险利率
# Black-Scholes公式
def black_scholes(V, D, sigma_V, r, T=1):
d1 = (np.log(V / D) + (r + 0.5 * sigma_V**2) * T) / (sigma_V * np.sqrt(T))
d2 = d1 - sigma_V * np.sqrt(T)
return V * norm.cdf(d1) - D * np.exp(-r * T) * norm.cdf(d2)
# KMV模型方程
def kmv_equation(x):
V, sigma_V = x
E = black_scholes(V, total_debt, sigma_V, risk_free_rate)
return [E - equity_value, sigma_V * V - equity_volatility * equity_value]
# 使用fsolve求解资产价值和资产波动率
V, sigma_V = fsolve(kmv_equation, [equity_value, equity_volatility])
# 计算违约距离(DD)
DD = (V - total_debt) / (sigma_V * np.sqrt(equity_volatility**2 + sigma_V**2))
# 计算违约概率(EDF)
def dd_to_edf(dd):
return norm.cdf(-dd)
EDF = dd_to_edf(DD)
print(f"公司的资产价值: {V}")
print(f"公司的资产波动率: {sigma_V}")
print(f"公司的违约距离: {DD}")
print(f"公司的违约概率: {EDF}")
案例-绿地控股违约概率
import pandas as pd
import numpy as np
import warnings
from scipy.optimize import fsolve
from scipy.stats import norm # 正态分布累计概率函数
def cal_Va_Sigma_a(V_e, Sigma_e, D, rf, t=1):
"""
计算资产市值以及资产波动率
:param V_e: 股权市值
:param Sigma_e: 股权波动率
:param D: 债务面值
:param rf: 无风险利率
:param t: 无风险利率对应期限
:return: 资产市值V_a和资产波动率的Series
"""
rf = (np.power(1 + rf, 1 / t) - 1) * t
V_e, Sigma_e, D, rf = float(V_e), float(Sigma_e), float(D), float(rf)
def solve_function(x):
"""
方程组,用于根据股权市值,股权波动率,债务面值,无风险利率,求解每只股票的资产市值V_a和资产波动率Sigma_a
:param x: 列表,两个未知数,分别是资产市值以及资产波动率
:return: 方程
"""
x0 = float(x[0]) # 资产市场价格, 未知数1
x1 = float(x[1]) # 资产波动率,未知数2
# 计算d1和d2
d1 = (np.log(abs(x0)) - np.log(D) + (rf + 0.5 * (x1 ** 2)) * t) / (x1 * np.sqrt(t))
d2 = d1 - x1 * np.sqrt(t)
return [
x0 * norm.cdf(d1) - D * np.exp(-rf * t) * norm.cdf(d2) - V_e,
x0 * x1 * (norm.cdf(d1) / V_e) - Sigma_e
]
e_x = np.array([V_e, Sigma_e]) # 设定一个方程求解初始值
# 求解方程组
# bsm方程组是一个非线性方程组,fslove求得的是局部最优解,所以不一定能得到全局最优解
# 迭代初始值x0对结果的影响可能很大, 不合适的初值可能导致结果不收敛或偏差太大,因而爆出警告
warnings.filterwarnings('ignore') # 忽略warnings,有两个求解报了warning,想看warning就注释掉
result = fsolve(solve_function, e_x)
return pd.Series(result, index=['V_a', 'Sigma_a'])
if __name__ == "__main__":
# 读入2021年年报中的全A股数据(未发布年报则是采用2021年第三季度财务数据), 数据来源Wind
# 列名说明:
# board: 上市板块;Ve: 2022-01-01的股权市值;Sigma_e:股权过去252天波动率(年化%)
# sw: 申万一级;D_s:流动负债;D_l:非流动负债;D:负债总额
data = pd.read_excel('全市场2021年信息.xlsx', sheet_name=0)
data.columns = ['stock_code', 'stock_name', 'sw', 'board', 'Ve', 'Sigma_e',
'D_s', 'D_l', 'D']
# 读入无风险利率(包括各个期限国债到期收益率)
Rf = pd.read_excel('BND_TreasYield.xlsx', sheet_name=0)
# 使用十年期到期国债收益率(Maturity=10)
Rf = Rf[Rf['Yeartomatu'] == 10].copy()
Rf.drop(columns=['Cvtype'], inplace=True)
Rf.columns = ['trade_date', 'Maturity', 'rf']
# 计算2021年平均无风险收益率
Rf['Year'] = Rf['trade_date'].apply(lambda x: int(x[:4])) # 生成Year这一列
rf = Rf.loc[Rf.Year == 2021, 'rf'].mean() / 100 # 除以100
# 'Ve', 'Sigma_e', 'D'为空或是0,则是无法进行计算,因此删除此部分样本
data = data.replace(0, np.NaN)
data.dropna(subset=['Ve', 'Sigma_e', 'D'], inplace=True)
# 银行与非银金融流动与非流动负债数据没有,删除
data = data[~data['sw'].isin(['银行', '非银金融'])].copy()
data.dropna(subset=['sw'], inplace=True)
# 其他情况是没有非流动负债,全部填充0
data.fillna(0, inplace=True)
# 波动率单位调整
data['Sigma_e'] = data['Sigma_e'] / 100
# 计算违约点Dp
data['Dp'] = data['D_s'] + 0.5 * data['D_l']
# apply方法,逐行将股权市值、市值波动率、债务、无风险利率输入到cal_Va_Sigma_a()函数中,求解对应资产市值以及资产波动率
Va_Sigma = data.apply(lambda x: cal_Va_Sigma_a(x['Ve'], x['Sigma_e'], x['D'], rf, t=1), axis=1)
data = pd.concat([data, Va_Sigma], axis=1) # 结果合并到源数据中
# 计算违约距离
data['default_d'] = (data['V_a'] - data['Dp']) / data['V_a'] * data['Sigma_e']
# 计算违约概率,逐行将违约距离映射到正态分布
data['default_prob'] = data['default_d'].apply(lambda x: norm.cdf(-x))
# 选择要输出的列,重命名成中文,加上时间以及无风险利率
data = data[['stock_code', 'stock_name', 'sw', 'V_a', 'Sigma_a', 'Dp', 'default_d', 'default_prob']]
data.rename(columns={'stock_code': '股票代码', 'stock_name': '股票名称', 'sw': '申万一级',
'V_a': '资产市值', 'Sigma_a': '资产波动率', 'Dp': '违约点',
'default_d': '违约距离', 'default_prob': '违约概率'}, inplace=True)
data['时间'] = '2022-01-01'
data['无风险利率'] = rf
data = data[[
'股票代码', '股票名称', '申万一级', '时间', '无风险利率',
'资产市值', '资产波动率', '违约点', '违约距离', '违约概率']].copy()
data.to_excel('2021年报全A股市场违约概率表(除非银金融、银行).xlsx', index=False)
KMV模型作为一种创新的信用风险评估工具,为金融风险管理提供了新的视角和方法,但其应用仍需结合实际情况和数据可得性进行调整。在实际应用中,还需要考虑数据的获取、模型参数的估计、模型的验证和调整等多个方面。此外,KMV模型的实现可能需要专业的金融知识和对市场数据的深入理解。上述代码仅供参考,实际应用时需要根据具体情况进行调整和优化。
版权声明:文章来自公众号(python风控模型),未经许可,不得抄袭。遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。