综述:时间序列LB LM检验

本文介绍了时间序列分析中的序列自相关检验,特别是LB检验,它用于判断序列是否存在总体相关性或随机性。通过对ARIMA模型残差进行LB检验,评估模型适用性。同时,文中讨论了在ARCH效应检验前后的LM检验目的,以及R语言中lr、wald、lm三种检验的原理。
摘要由CSDN通过智能技术生成

序列自相关检验(也可以视为白噪声检验)

文献出处:

https://blog.nex3z.com/2019/07/24/time-series-q-statistic/
https://www.zhihu.com/question/22863169
在这里插入图片描述

作用

对于滞后相关的检验,我们常常采用的方法还包括计算ACF和PCAF并观察其图像,但是无论是ACF还是PACF都仅仅考虑是否存在某一特定滞后阶数的相关。LB检验则是基于一系列滞后阶数,判断序列总体的相关性或者说随机性是否存在。
ARIMA模型去拟合数据后我们要对残差的估计序列进行LB检验,判断其是否是高斯白噪声,如果不是,那么就说明ARIMA模型也许并不是一个适合样本的模型。而对于更为复杂的模型,比如GARCH类模型,在开始进行ARCH效应检验并拟合后,对于所得到的序列,我们同样要进行LB检验,判断其是否与我们对模型的初始假定相同。

ARCH-LM在检验前后使用的目的是不同的,使用ARCH模型之前检验,是为了判断是否存在ARCH效应,是否使用该模型,使用ARCH模型之后再用该检验是为了判断ARCH模型是否消除了自回归条件异方差的影响。如果之前为检验,而做完模型之后才去做,首先可以了解笔者是认为该模型一定存在ARCH效应的,所以无需之前检验,只要用完模型检验通过检验就什么都解释了。 亲

R语言

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值