序列自相关检验(也可以视为白噪声检验)
文献出处:
https://blog.nex3z.com/2019/07/24/time-series-q-statistic/
https://www.zhihu.com/question/22863169
作用
对于滞后相关的检验,我们常常采用的方法还包括计算ACF和PCAF并观察其图像,但是无论是ACF还是PACF都仅仅考虑是否存在某一特定滞后阶数的相关。LB检验则是基于一系列滞后阶数,判断序列总体的相关性或者说随机性是否存在。
ARIMA模型去拟合数据后我们要对残差的估计序列进行LB检验,判断其是否是高斯白噪声,如果不是,那么就说明ARIMA模型也许并不是一个适合样本的模型。而对于更为复杂的模型,比如GARCH类模型,在开始进行ARCH效应检验并拟合后,对于所得到的序列,我们同样要进行LB检验,判断其是否与我们对模型的初始假定相同。
ARCH-LM在检验前后使用的目的是不同的,使用ARCH模型之前检验,是为了判断是否存在ARCH效应,是否使用该模型,使用ARCH模型之后再用该检验是为了判断ARCH模型是否消除了自回归条件异方差的影响。如果之前为检验,而做完模型之后才去做,首先可以了解笔者是认为该模型一定存在ARCH效应的,所以无需之前检验,只要用完模型检验通过检验就什么都解释了。 亲
R语言
<