时间序列交叉验证

本文遵循时间序列机器学习的方法,推荐使用滚动原点评价(又称滚动原点再校准评价)进行交叉验证,这是一种嵌套交叉验证形式,能提供接近无偏的误差估计。在确保训练、验证和测试集的机构一致性的前提下,通过减少初始数据集的预测者数量,解决优化问题,形成三个阶段各自包含约10个机构的数据集。
摘要由CSDN通过智能技术生成

来源

https://www.mdpi.com/1099-4300/21/10/1015/htm#FD3-entropy-21-01015

翻译

#For cross-validation, we follow the time-series machine-learning literature and propose the use of rolling-origin evaluation [24], also known as rolling-origin-recalibration evaluation [25]. These are forms of nested cross-validation, which should give an almost unbiased estimate of error [23]. Once the number of institutions (forecasters) that we could be used to properly define the training, validation and test sets are selected, we can start to solve the optimization problem. As we will have already noticed, the institutions must be the same in the training, testing and validation sets. If this condition is not fulfilled, the problem will not be well defined. To solve this issue, in our application (see Section 4), the dimensionality of the initial data bank was reduced from 21 to around 10 forecasters satisfying the condition of existence of data fo

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值