Keras-TCN的API笔记

本文介绍了Keras-TCN库的API用法,包括关键参数如nb_filters, kernel_size, dilations等,并强调了TCN在多个任务上的优势,如并行性、可变长度输入。此外,提供了代码示例展示如何搭建和训练TCN模型。" 113511688,10544488,Python一键生成九宫格短视频教程,"['Python编程', '视频编辑', '图像处理', '朋友圈分享', '自动化工具']
摘要由CSDN通过智能技术生成


因为想用TCN进行时间序列预测,所以我打算研究一下怎么写代码。
从官网机翻来的。
这是个不成熟的坑,先挖再说。

API

https://pypi.org/project/keras-tcn/
pip install keras-tcn
中文:https://www.cnpython.com/pypi/keras-tcn
https://github.com/philipperemy/keras-tcn/tree/master/tasks

TCN优势

在大量任务上优于LSTM
并行性、灵活的接受 field 大小、稳定的梯度、训练时的低记忆要求、可变长度输入

API参数

TCN(
nb_filters=64,
kernel_size=2,
nb_stacks=1,
dilations=[1, 2, 4, 8, 16, 32],
padding=‘causal’,
use_skip_connections=True,
dropout_rate=0.0,
return_sequences=True,
activation=‘linear’,
kernel_initializer=‘he_normal’
, use_batch_norm=False, **kwargs)

nb_filters: Integer

在卷积层中使用的过滤器的数量,类似于LSTM。

kernel_size

整数,在每个卷积层中使用的内核kernel的大小。

dilations

列表。扩张的列表的一个例子是 : [1, 2, 4, 8, 16, 32, 64].

nb_stacks

整数。要使用的剩余块的堆栈( stacks of residual blocks)数量。

padding

String. The padding to use in the convolutions. ‘causal’ for a causal network (as in the original implementation) and ‘same’ for a non-causal network.
字符串。在卷积中使用的填充。
在因果网络中使用“因果”(如同最初的实现),而在非因果网络中使用“相同”。

use_skip_connections

Boolean. If we want to add skip connections from input to each residual block.
布尔。如果我们想要添加从输入到每个剩余块的跳过连接。

return_sequences

Boolean. Whether to return the last output in the output sequence, or the full sequence.
布尔。
是返回输出序列中的最后一个输出,还是返回完整序列。

dropout_rate

Float between 0 and 1. Fraction of the input units to drop.
在0和1之间浮动。要下降的输入单位的分数。

activation

The activation used in the residual blocks o = activation(x + F(x)).
剩余块中使用的激活o =激活(x + F(x))。

kernel_initializer

Initializer for the kernel weights matrix (Conv1D).
核权值矩阵(Conv1D)的初始化式。

use_batch_norm

Whether to use batch normalization in the residual layers or not.
是否在剩余层中使用批处理规范化。

kwargs

Any other arguments for configuring parent class Layer. For example “name=str”, Name of the model. Use unique names when using multiple TCN.
用于配置父类层的任何其他参数

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值