基于LSTM的【气象数据+发电数据】多步时序数据建模预测分析实战

本文介绍了基于LSTM的时序数据建模预测,特别是利用LSTM处理气象和发电数据。文章阐述了RNN与LSTM的区别,并探讨了LSTM的门机制。通过巴西的气象和发电数据,进行了数据预处理、缺失值填充和归一化,然后构建了LSTM模型进行多步预测,展示了模型的性能和预测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

       笔者三年多的从业经历里面积累很多关于时序数据建模预测的经验,因为工作性质的原因,接触到的较多的数据类型均为时序数据,在处理这种类型数据的时候会较多使用到回归模型、RNN或者是LSTM模型,所以本文主要基于以往的实践经验来分享一些时序户数建模领域里面的常用做法。   

     既然说到了LSTM,就要简单的介绍一下RNN(Recurrent Neural Network,RNN)循环神经网络了,LSTM神经网络模型可以看做是RNN的一种,RNN是一类专门用于处理时序数据样本的神经网络,它的每一层不仅输出给下一层,同时还输出一个隐状态,给当前层在处理下一个样本时使用。

       RNN可以根据之前出现的信息对当前的信息进行推断,特别是在语言处理中,RNN可用于根据上文预测下一个将要出现的词。但是它只能处理一定间隔的信息,如果上文间隔过远,就有可能出现难以联想的情况。这时候LSTM就应运而生了。LSTM的展开结构中与RNN的不同主要是存在控制存储状态的结构,如下图是经典的RNN模型和LSTM模型的展开结构示意图:

        想要深入理解LSTM的机理模式&#

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Together_CZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值