Translation-based Factorization Machines for Sequential Recommendation基于FM的翻译序列推荐

摘要

序列推荐算法的目的是根据用户的历史交互来预测用户未来的行为。最近的一项工作通过采用度量学习和知识图完成的思想,在顺序推荐任务上取得了最先进的性能。这些算法用低维嵌入和距离函数替换了内积,使用简单的动态转换对用户行为进行建模。

      在本文中,我们提出了TransFM模型,它结合了翻译和基于度量的方法与因子分解机(FMs)进行顺序推荐。这样做可以让我们收获FMs的好处(特别是,直接合并基于内容的特性的能力),同时提高基于翻译的模型在顺序设置中的最新性能。特别地,我们学习了每个特征维的嵌入和平移空间,用平方欧氏距离代替内积来度量特征之间的交互强度。就像FMs一样,我们给出了跨频分析可以在线性时间内进行计算,并利用经典方法进行优化。由于TransFM对任意特征向量进行操作,因此可以轻松地合并附加内容信息,而无需对模型本身进行重大更改。从经验上看,考虑到内容特性,TransFM的性能显著提高,在针对各种数据集的顺序推荐任务上,它的性能优于最先进的模型。

下面纯属个人理解,如有错误请指正:

作者提出的transFM====transRec+FMs

上图是通用TransFM模型。与标准顺序算法和基于度量的算法不同,TransFM对所有观察到的特征之间的交互进行建模。对于每个特征i,模型学习两个实体:一个低维嵌入的和一个平移向量。然后利用欧氏距离的平方d2(·,·)测量特征对之间的相互作用强度。上图中,包含用户特征,item特征和time特征,之间的交互权重由各特征的结束点和起始点之间的距离给出(图中虚线)。特别是TransFM模型中的translation和distance起到了关键作用。

  思想:FM框架(因为本文关注隐性反馈)+序列推荐算法(将欧式距离代替点积)+混合推荐(可以合并时间、地理位置、人口和其他内容特征)。

下面介绍常用的推荐算法:

FM:

利用内积和隐性特征,每个特征的交互根据分解参数的内积加权。

序列推荐:

  常用的序列推荐一般是使用欧式距离代替内积,采用度量的方法。但是如果不做改变,无法将时间、地理位置和其他内容特征考虑进来。但性能一般比FM较高。

translation方法:

对于模拟内容和协同特征交互有效。translation的空间表达能力的增强,使模拟特征交互更有效。

而且,作者提到适当聚合方法,可以提高推荐性能。

 

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值