Mxnet (11): 卷积神经网(CNN)

本文详细介绍了卷积神经网络(CNN)的基础知识,包括互相关运算、卷积层、图像边缘检测、学习内核、特征图和感受野。此外,还探讨了填充、步幅、多通道卷积以及1X1卷积层的作用。通过实例解释了卷积层和池化层的工作原理,最后讨论了经典的LeNet模型及其在Fashion-MNIST数据集上的应用。
摘要由CSDN通过智能技术生成

1. 卷积神经网

卷积神经网络(CNN),专门为了处理图片而设计的神经网络。基于CNN的体系结构现在在计算机视觉领域无处不在,并且已经变得如此占主导地位,以至于今天几乎所有开发出商业应用程序或参加与图像识别,对象检测或语义分割有关的应用都会用到。
CNN除了准确率高,CNN往往在计算效率上也高,这不仅是因为它们所需的参数比完全连接的架构少,而且卷积易于在GPU内核之间并行化。因此从业人员在可能情况下都会使用CNN,甚至在处理一些一维结构的任务(音频,文本和事件序列分析),CNN的一些巧妙改编也使它们适用于图结构数据和推荐系统。

1.1 互相关运算

严格来说,卷积层做得是互相关运算。在这样的层中,输入张量和核张量通过互相关运算被组合以产生输出张量。

在这里插入图片描述

在二维互相关运算中,我们从位于输入张量的左上角的卷积窗口开始,然后将其从左到右以及从上到下在整个输入张量上滑动。当卷积窗口滑动到某个位置时,该窗口中包含的输入张量和内核张量将逐元素相乘,并且将所得张量求和,得出单个标量值。该结果给出了在相应位置的输出张量的值。

from d2l import mxnet as d2l
from mxnet import autograd, np, npx, init, gluon
from mxnet.gluon import nn
import plotly.graph_objs as go
npx.set_np()


def corr2d(X, K):
    
    h, w = K.shape
    m,n = X.shape
    Y = np.zeros((m-h+1, n-w+1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i,j] = (X[i:i+h, j:j+w]*K).sum()
    return Y
  • 使用
X = np.array([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
K = np.array([[0.0, 1.0], [2.0, 3.0]])
corr2d(X, K)

#array([[19., 25.],
#       [37., 43.]])

1.2 卷积层

  • 卷积层使输入和内核进行互相关运算,并添加标量偏差以产生输出。
  • 卷积层的两个参数是内核和标量偏差

基于上面第一的corr2d方法实现二维卷积层,在__init__构造函数中,声明weight和bias作为参数。

class Conv2D(nn.Block):
    def __init__(self, kernel_size, **kwargs):
        super().__init__(**kwargs)
        self.weight = self.params.get('weight', shape=kernel_size)
        self.bias = self.params.get('bias', shape=(1,))
        
    def forward(self, X):
        return corr2d(X, self.weight.data()) + self.bias.data()

1.3 图像边缘检测

一个小栗子用于理解卷积层作用。构建一个6×8 像素的图像:中间的四列为黑色(0),其余为白色(1)。

X = np.ones((6, 8))
X[:, 2:6] = 0
X

在这里插入图片描述

  • 我们构造一个K高度为1且宽度为2 的内核。当我们对输入执行互相关运算时,如果水平相邻元素相同,则输出为0。否则,不为0。
K = np.array([[1.0, -1.0]])
  • 通过互相关计算,从白色到黑色的边缘检测为1,从黑色到白色的边缘检测为-1。所有其他输出取值为0。因此可以检测边缘。
Y = corr2d(X, K)
Y

在这里插入图片描述

1.4 学习内核

使用物体边缘检测中输入数据X和数据Y来学习内核K。

  • 构造一个卷积层,初始化随机数组
  • 每一次迭代中,使用平方误差比较Y和卷积层数据
  • 然后通过autogrid更新权重
  • 为了简单,忽略了偏差use_bias=False
conv2d = nn.Conv2D(1, kernel_size=(1, 2), use_bias=False)
conv2d.initialize()

X = X.reshape(1, 1, 6, 8)
Y = Y.reshape(1, 1, 6, 7)

for i in range(10):
    with autograd.record():
        Y_hat = conv2d(X)
        l = (Y_hat-Y) ** 2
    l.backward()
    # 更新权重
    conv2d.weight.data()[:] -= 3e-2 * conv2d.weight.grad()
    print(f'batch {i + 1}, loss {float(l.sum()):.4f}')

在这里插入图片描述

  • 学习到的张量跟之前定义的[1, -1]已经非常接近了

在这里插入图片描述

1.5 特征图和感受野

二维卷积层输出的二维数组可以看作输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。
影响元素 x 的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做 x 的感受野(receptive field)。

2. 填充和步幅

上面例子中, 我们使用高和宽为3的输入与高和宽为2的卷积核得到高和宽为2的输出。一般来说,假设输入形状是 n h × n w n_h×n_w nh×nw,卷积核窗口形状是 k h × k w k_h×k_w kh×kw,那么输出形状将会是 ( n h − k h + 1 ) × ( n w − k w + 1 ) (n_h−k_h+1)×(n_w−k_w+1) (n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值