动手学深度学习(MXNet)2:卷积神经网络

二维卷积层

卷积运算

from mxnet import autograd, nd
from mxnet.gluon import nn
def corr2d(X, K):
    h, w = K.shape
    Y = nd.zeros((X.shape[0]-h+1, X.shape[1]-w+1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i,j] = (X[i:i+h,  j:j+w]*K).sum()
    return Y

class Conv2D(nn.Block):
    def __init__(self, kernel_size, **kwargs):
        super(Conv2D, self).__init__(**kwargs)
        self.weight = self.params.get('weight', shape=kernel_size)
        self.bias = self.params.get('bias', shape=(1,))

    def forward(self, x):
        return corr2d(x, self.weight.data()) + self.bias.data()

物体边缘检测,可以使用卷积操作,可以通过网络学习出卷积核

二位卷积层输出的二维数组可以看作是输入在空间维度(宽和高)上某一级的表征,也叫特征图(feature map)。

影响元素x的前向计算的所有可能输入区域(可能大于输入的实际尺寸)叫做x的感受野(receptive field)。

如上图,输入阴影部分的四个元素是输出中阴影部分元素的感受野。可见,我们可以通过更深的卷积神经网络使特征图中单个元素的感受野变得更加广阔,从而捕捉输入上更大尺寸的特征。

填充和步幅

填充(padding)是指在输入高和宽的两侧填充元素(通常是0元素)。

输入(nw, nh),卷积核(kw, kh),填充(pw, ph)输出形状(nh-kn+ph+1) x (nw-kw+pw+1)

# 使用高为5、宽为3的卷积核。在高和宽两侧的填充数分别为2和1
conv2d = nn.Conv2D(1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape

步幅(stride),每次滑动的行数核列数。(sw, sh),输出形状 ⌊(nh−kh+ph+sh)/sh⌋×⌊(nw−kw+pw+sw)/sw⌋.

conv2d = nn.Conv2D(1, kernel_size=(3, 5), padding=(0, 1), strides=(3, 4))
comp_conv2d(conv2d, X).shape

多输入通道和多输出通道

彩色图片可以表示为3 x h x w的多维数组。3为通道(channel)

多输入通道的计算,如又c个卷积核,则输出结果为c个卷积之和。

import d2lzh as d2l
from mxnet import nd

def corr2d_multi_in(X, K):
    # 首先沿着X和K的第0维(通道维)遍历。然后使用*将结果列表变成add_n函数的位置参数
    # (positional argument)来进行相加
    return nd.add_n(*[d2l.corr2d(x, k) for x, k in zip(X, K)])

X = nd.array([[[0, 1, 2], [3, 4, 5], [6, 7, 8]],
              [[1, 2, 3], [4, 5, 6], [7, 8, 9]]])
K = nd.array([[[0, 1], [2, 3]], [[1, 2], [3, 4]]])

corr2d_multi_in(X, K)

多输出通道,由于我们对结果做了累加,所以不论输入通道数是多少,输出通道数总是1。

如果希望得到多个通道的输出co,我们可以为每个输出通道分别创建形状为ci x kh x kw的核数组。

def corr2d_multi_in_out(X, K):
    # 对K的第0维遍历,每次同输入X做互相关计算。所有结果使用stack函数合并在一起
    return nd.stack(*[corr2d_multi_in(X, k) for k in K])
K = nd.stack(K, K + 1, K + 2)
K.shape # (3, 2, 2, 2)
corr2d_multi_in_out(X, K) # 输出3个通道

1x1卷积层,因为使用了最小窗口,1x1卷积失去了卷积层可以识别高和宽维度上相邻元素构成的模式的功能。

作用和全连接层等价。通常用来调整网络层之间的通道数,并控制模型复杂度。

def corr2d_multi_in_out_1x1(X, K):
    c_i, h, w = X.shape
    c_o = K.shape[0]
    X = X.reshape((c_i, h * w))
    K = K.reshape((c_o, c_i))
    Y = nd.dot(K, X)  # 全连接层的矩阵乘法
    return Y.reshape((c_o, h, w))

池化层

为了缓解卷积层对位置的过度敏感性。

from mxnet import nd
from mxnet.gluon import nn

def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = nd.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
                Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
                Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y

也考虑填充和步幅

多通道,不是相加,池化层的输出通道数和输入通道数相等。

你觉得最小池化层这个想法有没有意义?

LeNet

import d2lzh as d2l
import mxnet as mx
from mxnet import autograd, gluon, init, nd
from mxnet.gluon import loss as gloss, nn
import time

net = nn.Sequential()
net.add(nn.Conv2D(channels=6, kernel_size=5, activation='sigmoid'),
        nn.MaxPool2D(pool_size=2, strides=2),
        nn.Conv2D(channels=16, kernel_size=5, activation='sigmoid'),
        nn.MaxPool2D(pool_size=2, strides=2),
        # Dense会默认将(批量大小, 通道, 高, 宽)形状的输入转换成
        # (批量大小, 通道 * 高 * 宽)形状的输入
        nn.Dense(120, activation='sigmoid'),
        nn.Dense(84, activation='sigmoid'),
        nn.Dense(10))
# 验证网络层
X = nd.random.uniform(shape=(1, 1, 28, 28))
net.initialize()
for layer in net:
    X = layer(X)
    print(layer.name, 'output shape:\t', X.shape)
# 获取数据和训练模型
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

def try_gpu():  # 本函数已保存在d2lzh包中方便以后使用
    try:
        ctx = mx.gpu()
        _ = nd.zeros((1,), ctx=ctx)
    except mx.base.MXNetError:
        ctx = mx.cpu()
    return ctx
ctx = try_gpu()
print(ctx)
# 本函数已保存在d2lzh包中方便以后使用。该函数将被逐步改进:它的完整实现将在“图像增广”一节中
# 描述
def evaluate_accuracy(data_iter, net, ctx):
    acc_sum, n = nd.array([0], ctx=ctx), 0
    for X, y in data_iter:
        # 如果ctx代表GPU及相应的显存,将数据复制到显存上
        X, y = X.as_in_context(ctx), y.as_in_context(ctx).astype('float32')
        acc_sum += (net(X).argmax(axis=1) == y).sum()
        n += y.size
    return acc_sum.asscalar() / n
# 本函数已保存在d2lzh包中方便以后使用
def train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs):
    print('training on', ctx)
    loss = gloss.SoftmaxCrossEntropyLoss()
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time()
        for X, y in train_iter:
            X, y = X.as_in_context(ctx), y.as_in_context(ctx)
            with autograd.record():
                y_hat = net(X)
                l = loss(y_hat, y).sum()
            l.backward()
            trainer.step(batch_size)
            y = y.astype('float32')
            train_l_sum += l.asscalar()
            train_acc_sum += (y_hat.argmax(axis=1) == y).sum().asscalar()
            n += y.size
        test_acc = evaluate_accuracy(test_iter, net, ctx)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, '
              'time %.1f sec'
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc,
                 time.time() - start))# 本函数已保存在d2lzh包中方便以后使用

def train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs):
    print('training on', ctx)
    loss = gloss.SoftmaxCrossEntropyLoss()
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, start = 0.0, 0.0, 0, time.time()
        for X, y in train_iter:
            X, y = X.as_in_context(ctx), y.as_in_context(ctx)
            with autograd.record():
                y_hat = net(X)
                l = loss(y_hat, y).sum()
            l.backward()
            trainer.step(batch_size)
            y = y.astype('float32')
            train_l_sum += l.asscalar()
            train_acc_sum += (y_hat.argmax(axis=1) == y).sum().asscalar()
            n += y.size
        test_acc = evaluate_accuracy(test_iter, net, ctx)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, '
              'time %.1f sec'
              % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc,
                 time.time() - start))
lr, num_epochs = 0.9, 5
net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx, num_epochs)

AlexNet

AlexNet使用了8层CNN第一层中的卷积窗口形状是11×1111×11。因为ImageNet中绝大多数图像的高和宽均比MNIST图像的高和宽大10倍以上,ImageNet图像的物体占用更多的像素,所以需要更大的卷积窗口来捕获物体。第二层中的卷积窗口形状减小到5×55×5,之后全采用3×33×3。此外,第一、第二和第五个卷积层之后都使用了窗口形状为3×33×3、步幅为2的最大池化层。而且,AlexNet使用的卷积通道数也大于LeNet中的卷积通道数数十倍。

紧接着最后一个卷积层的是两个输出个数为4096的全连接层。这两个巨大的全连接层带来将近1 GB的模型参数。由于早期显存的限制,最早的AlexNet使用双数据流的设计使一个GPU只需要处理一半模型。幸运的是,显存在过去几年得到了长足的发展,因此通常我们不再需要这样的特别设计了。

第二,AlexNet将sigmoid激活函数改成了更加简单的ReLU激活函数。一方面,ReLU激活函数的计算更简单,例如它并没有sigmoid激活函数中的求幂运算。另一方面,ReLU激活函数在不同的参数初始化方法下使模型更容易训练。这是由于当sigmoid激活函数输出极接近0或1时,这些区域的梯度几乎为0,从而造成反向传播无法继续更新部分模型参数;而ReLU激活函数在正区间的梯度恒为1。因此,若模型参数初始化不当,sigmoid函数可能在正区间得到几乎为0的梯度,从而令模型无法得到有效训练。

第三,AlexNet通过丢弃法(参见“丢弃法”一节)来控制全连接层的模型复杂度。而LeNet并没有使用丢弃法。

第四,AlexNet引入了大量的图像增广,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。

import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import data as gdata, nn
import os
import sys

net = nn.Sequential()
# 使用较大的11 x 11窗口来捕获物体。同时使用步幅4来较大幅度减小输出高和宽。这里使用的输出通
# 道数比LeNet中的也要大很多
net.add(nn.Conv2D(96, kernel_size=11, strides=4, activation='relu'),
        nn.MaxPool2D(pool_size=3, strides=2),
        # 减小卷积窗口,使用填充为2来使得输入与输出的高和宽一致,且增大输出通道数
        nn.Conv2D(256, kernel_size=5, padding=2, activation='relu'),
        nn.MaxPool2D(pool_size=3, strides=2),
        # 连续3个卷积层,且使用更小的卷积窗口。除了最后的卷积层外,进一步增大了输出通道数。
        # 前两个卷积层后不使用池化层来减小输入的高和宽
        nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
        nn.Conv2D(384, kernel_size=3, padding=1, activation='relu'),
        nn.Conv2D(256, kernel_size=3, padding=1, activation='relu'),
        nn.MaxPool2D(pool_size=3, strides=2),
        # 这里全连接层的输出个数比LeNet中的大数倍。使用丢弃层来缓解过拟合
        nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
        nn.Dense(4096, activation="relu"), nn.Dropout(0.5),
        # 输出层。由于这里使用Fashion-MNIST,所以用类别数为10,而非论文中的1000
        nn.Dense(10))
# 观察每一层的输出形状
X = nd.random.uniform(shape=(1, 1, 224, 224))
net.initialize()
for layer in net:
    X = layer(X)
    print(layer.name, 'output shape:\t', X.shape)
# 读取数据
# 本函数已保存在d2lzh包中方便以后使用
def load_data_fashion_mnist(batch_size, resize=None, root=os.path.join(
        '~', '.mxnet', 'datasets', 'fashion-mnist')):
    root = os.path.expanduser(root)  # 展开用户路径'~'
    transformer = []
    if resize:
        transformer += [gdata.vision.transforms.Resize(resize)]
    transformer += [gdata.vision.transforms.ToTensor()]
    transformer = gdata.vision.transforms.Compose(transformer)
    mnist_train = gdata.vision.FashionMNIST(root=root, train=True)
    mnist_test = gdata.vision.FashionMNIST(root=root, train=False)
    num_workers = 0 if sys.platform.startswith('win32') else 4
    train_iter = gdata.DataLoader(
        mnist_train.transform_first(transformer), batch_size, shuffle=True,
        num_workers=num_workers)
    test_iter = gdata.DataLoader(
        mnist_test.transform_first(transformer), batch_size, shuffle=False,
        num_workers=num_workers)
    return train_iter, test_iter

batch_size = 128
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = load_data_fashion_mnist(batch_size, resize=224)
# 训练
lr, num_epochs, ctx = 0.01, 5, d2l.try_gpu()
net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx, num_epochs)

使用重复元素的网络(VGG)

VGG提出了可以通过重复使用简单的基础块来构建深度模型的思路

VGG块的组成规律是:连续使用数个相同的填充为1、窗口形状为3x3的卷积层后接上一个步幅为2、窗口形状为2x2的最大池化层。卷积层保存输入的高和宽不变,而池化层则对其减半。我们使用vgg_block函数来实现这个基础的VGG块。

指定卷积层的数量num_convs和输出通道数num_channels。

import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import nn

def vgg_block(num_convs, num_channels):
    blk = nn.Sequential()
    for _ in range(num_convs):
        blk.add(nn.Conv2D(num_channels, kernel_size=3,
                          padding=1, activation='relu'))
    blk.add(nn.MaxPool2D(pool_size=2, strides=2))
    return blk

VGG网络。有5个卷积块,前2块使用单卷积层,而后3块使用双卷积层。第一块输出通道是64,之后翻倍,直到512。

conv_arch = ((1, 64), (1, 128), (2, 256), (2, 512), (2, 512))

因为使用了8个卷积层和3个全连接层,所以经常被称为VGG-11。

def vgg(conv_arch):
    net = nn.Sequential()
    # 卷积层部分
    for (num_convs, num_channels) in conv_arch:
        net.add(vgg_block(num_convs, num_channels))
    # 全连接层部分
    net.add(nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
            nn.Dense(4096, activation='relu'), nn.Dropout(0.5),
            nn.Dense(10))
    return net

net = vgg(conv_arch)

输出每一层的输出形状

net.initialize()
X = nd.random.uniform(shape=(1, 1, 224, 224))
for blk in net:
    X = blk(X)
    print(blk.name, 'output shape:\t', X.shape)

获取数据和训练模型

ratio = 4
small_conv_arch = [(pair[0], pair[1] // ratio) for pair in conv_arch]
net = vgg(small_conv_arch)

lr, num_epochs, batch_size, ctx = 0.05, 5, 128, d2l.try_gpu()
net.initialize(ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs)

VGG-11通过5个可以重复使用的卷积块来构造网络。根据每块里卷积层个数和输出通道数可以定义出不同的VGG模型。

网络中的网络(NiN)

提出了另一种思路,即串联多个由卷积层和“全连接”层构成的小网络来构建一个深层网络。

NiN块,如果想在全连接层后再接上卷积层,则需要将全连接层的输出变换为思维。NiN使用1x1卷积层替代全连接层,从而使空间信息能够自然传递到后面的层中去。对比AlexNet和VGG等网络在结构上的主要区别。

NiN块由一个卷积层加两个充当全连接层的1x1卷积层串联而成。其中第一个卷积层的超参数可以自行设置,而第二、三卷积层的超参数是固定的。

import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import nn

def nin_block(num_channels, kernel_size, strides, padding):
    blk = nn.Sequential()
    blk.add(nn.Conv2D(num_channels, kernel_size,
                      strides, padding, activation='relu'),
            nn.Conv2D(num_channels, kernel_size=1, activation='relu'),
            nn.Conv2D(num_channels, kernel_size=1, activation='relu'))
    return blk

NiN与AlexNet输出通道一致,不同的是最后使用全局平均池化层对每个通道中所有元素求平均并直接用于分类。

这个设计的好处是可以显著减少模型参数尺寸,从而缓解过拟合。

net = nn.Sequential()
net.add(nin_block(96, kernel_size=11, strides=4, padding=0),
        nn.MaxPool2D(pool_size=3, strides=2),
        nin_block(256, kernel_size=5, strides=1, padding=2),
        nn.MaxPool2D(pool_size=3, strides=2),
        nin_block(384, kernel_size=3, strides=1, padding=1),
        nn.MaxPool2D(pool_size=3, strides=2), nn.Dropout(0.5),
        # 标签类别数是10
        nin_block(10, kernel_size=3, strides=1, padding=1),
        # 全局平均池化层将窗口形状自动设置成输入的高和宽
        nn.GlobalAvgPool2D(),
        # 将四维的输出转成二维的输出,其形状为(批量大小, 10)
        nn.Flatten())
X = nd.random.uniform(shape=(1, 1, 224, 224))
net.initialize()
for layer in net:
    X = layer(X)
    print(layer.name, 'output shape:\t', X.shape)
lr, num_epochs, batch_size, ctx = 0.1, 5, 128, d2l.try_gpu()
net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs)
  • NiN去除了容易造成过拟合的全连接输出层,而是将其替换成输出通道数等于标签类别数的NiN块和全局平均池化层。
  • NiN的以上设计思想影响了后面一系列卷积神经网络的设计

含并行连接的网络(GoogLeNet)

2014年,GoogLeNet吸收了NiN中网络串联网络的思想,并在此基础上做了很大改进。

基础卷积块叫Inception块,与NiN块相比,其更加复杂。有4条并行的线路。前3条线路抽取不同空间尺寸下的信息,其中中间2个线路会对输入先做1x1卷积来减少输入通道数,以降低模型复杂度。第4条使用来了合适的填充使输入和输出的高和宽一致。最后输出在通道维上连结,并输入接下来的层中去。

可以自定义的超参数是每个层的输出通道数,以此来控制模型复杂度。

import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import nn

class Inception(nn.Block):
    # c1 - c4为每条线路里的层的输出通道数
    def __init__(self, c1, c2, c3, c4, **kwargs):
        super(Inception, self).__init__(**kwargs)
        # 线路1,单1 x 1卷积层
        self.p1_1 = nn.Conv2D(c1, kernel_size=1, activation='relu')
        # 线路2,1 x 1卷积层后接3 x 3卷积层
        self.p2_1 = nn.Conv2D(c2[0], kernel_size=1, activation='relu')
        self.p2_2 = nn.Conv2D(c2[1], kernel_size=3, padding=1,
                              activation='relu')
        # 线路3,1 x 1卷积层后接5 x 5卷积层
        self.p3_1 = nn.Conv2D(c3[0], kernel_size=1, activation='relu')
        self.p3_2 = nn.Conv2D(c3[1], kernel_size=5, padding=2,
                              activation='relu')
        # 线路4,3 x 3最大池化层后接1 x 1卷积层
        self.p4_1 = nn.MaxPool2D(pool_size=3, strides=1, padding=1)
        self.p4_2 = nn.Conv2D(c4, kernel_size=1, activation='relu')

    def forward(self, x):
        p1 = self.p1_1(x)
        p2 = self.p2_2(self.p2_1(x))
        p3 = self.p3_2(self.p3_1(x))
        p4 = self.p4_2(self.p4_1(x))
        return nd.concat(p1, p2, p3, p4, dim=1)  # 在通道维上连结输出

跟VGG一样,主体卷积部分中使用5个模块(block),每个模块之间使用步幅为2的3x3最大池化层来减少输出高宽。

第一个模块使用一个64通道的7x7卷积层。

b1 = nn.Sequential()
b1.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3, activation='relu'),
       nn.MaxPool2D(pool_size=3, strides=2, padding=1))

第二模块使用2个卷积层:首先是64通道的1×11×1卷积层,然后是将通道增大3倍的3×33×3卷积层。它对应Inception块中的第二条线路。

b2 = nn.Sequential()
b2.add(nn.Conv2D(64, kernel_size=1, activation='relu'),
       nn.Conv2D(192, kernel_size=3, padding=1, activation='relu'),
       nn.MaxPool2D(pool_size=3, strides=2, padding=1))

第三模块串联2个完整的Inception块。第一个Inception块的输出通道数为64+128+32+32=25664+128+32+32=256,其中4条线路的输出通道数比例为64:128:32:32=2:4:1:164:128:32:32=2:4:1:1。其中第二、第三条线路先分别将输入通道数减小至96/192=1/296/192=1/2和16/192=1/1216/192=1/12后,再接上第二层卷积层。第二个Inception块输出通道数增至128+192+96+64=480128+192+96+64=480,每条线路的输出通道数之比为128:192:96:64=4:6:3:2128:192:96:64=4:6:3:2。其中第二、第三条线路先分别将输入通道数减小至128/256=1/2128/256=1/2和32/256=1/832/256=1/8。

b3 = nn.Sequential()
b3.add(Inception(64, (96, 128), (16, 32), 32),
       Inception(128, (128, 192), (32, 96), 64),
       nn.MaxPool2D(pool_size=3, strides=2, padding=1))

第四模块更加复杂。它串联了5个Inception块,其输出通道数分别是192+208+48+64=512192+208+48+64=512、160+224+64+64=512160+224+64+64=512、128+256+64+64=512128+256+64+64=512、112+288+64+64=528112+288+64+64=528和256+320+128+128=832256+320+128+128=832。这些线路的通道数分配和第三模块中的类似,首先含3×33×3卷积层的第二条线路输出最多通道,其次是仅含1×11×1卷积层的第一条线路,之后是含5×55×5卷积层的第三条线路和含3×33×3最大池化层的第四条线路。其中第二、第三条线路都会先按比例减小通道数。这些比例在各个Inception块中都略有不同。

b4 = nn.Sequential()
b4.add(Inception(192, (96, 208), (16, 48), 64),
       Inception(160, (112, 224), (24, 64), 64),
       Inception(128, (128, 256), (24, 64), 64),
       Inception(112, (144, 288), (32, 64), 64),
       Inception(256, (160, 320), (32, 128), 128),
       nn.MaxPool2D(pool_size=3, strides=2, padding=1))

第五模块有输出通道数为256+320+128+128=832256+320+128+128=832和384+384+128+128=1024384+384+128+128=1024的两个Inception块。其中每条线路的通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均池化层来将每个通道的高和宽变成1。最后我们将输出变成二维数组后接上一个输出个数为标签类别数的全连接层。

b5 = nn.Sequential()
b5.add(Inception(256, (160, 320), (32, 128), 128),
       Inception(384, (192, 384), (48, 128), 128),
       nn.GlobalAvgPool2D())

net = nn.Sequential()
net.add(b1, b2, b3, b4, b5, nn.Dense(10))

GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。本节里我们将输入的高和宽从224降到96来简化计算。下面演示各个模块之间的输出的形状变化。

X = nd.random.uniform(shape=(1, 1, 96, 96))
net.initialize()
for layer in net:
    X = layer(X)
    print(layer.name, 'output shape:\t', X.shape)

获取数据和训练模型

lr, num_epochs, batch_size, ctx = 0.1, 5, 128, d2l.try_gpu()
net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs)
  • GoogLeNet和它的后继者们一度是ImageNet上最高效的模型之一:在类似的测试精度下,它们的计算复杂度往往更低。
  • GoogLeNet有数个后续版本。尝试实现并运行它们,然后观察实验结果。这些后续版本包括加入批量归一化层(下一节将介绍)[2]、对Inception块做调整 [3] 和加入残差连接(“残差网络(ResNet)”一节将介绍)[4]。
  • 对比AlexNet、VGG和NiN、GoogLeNet的模型参数尺寸。为什么后两个网络可以显著减小模型参数尺寸?

批量归一化

batch normalization能让较深的神经网络的训练变得更加容易。

通常来说,数据标准化预处理对于浅层模型就足够有效了。随着模型训练的进行,当每层中参数更新中,靠近输出层的输出较难出现剧烈变化。

但对深层神经网络来说,即使输入数据已做标准化,训练中模型参数的更新依然很容易造成靠近输出层输出的剧烈变化。

这种计算数值的不稳定性通常令我们难以训练出有效的深度模型。

批量归一化利用小批量上的均值和标准差,不断调整神经网络中间输出,从而使整个神经网络在各层的中间输出的数值更稳定。

BN和残差网络为训练和设计深度模型提供了两类重要思路。

对全连接层做批量归一化,通常将BN置于全连接层中的仿射变换和激活函数之间。

设输入u, W,b , 激活函数为ϕ。则输出为ϕ(BN(x)), 仿射变换x = W*u + b

考虑一个由m个样本组成的小批量。输出为一个新的小批量

批量归一化层的输出

由以下几步求得。首先,对小批量求均值和方差:

==>   这里ϵ>0是一个很小的常数,保证分母大于0

BN引入了两个可学习的模型参数,拉伸(scale)参数 γ 和偏移(shift)参数 β。这两个参数和x形状相同,皆为d维向量

⊙为按元素乘法。 这里值得注意的是,这两个参数保留了不对X做BN的可能。

可以这样理解:如果批量归一化无益,理论上,学出的模型可以不使用BN。

对卷积层做批量归一化,如果是多通道,每个通道都拥有独立的参数。

预测时的批量归一化,训练时,我们可以将batch设得大一点,从而使均值和方差的计算都较为准确。

在预测时,我们希望模型对于任意输入都有确定的输出。因此,单个样本的输出不应取决于批量归一化所需要的随机小批量中的均值和方差。

一种常用的方法是通过移动平均估算整个训练数据集的样本均值和方差,并在预测时使用它们得到确定的输出。可见,和丢弃层一样,BN在训练和预测的计算结果也是不一样的。

自定义一个BatchNorm层。保存平均得到的均值和方差,以便能够在模型预测时被使用。

import d2lzh as d2l
from mxnet import autograd, gluon, init, nd
from mxnet.gluon import nn

def batch_norm(X, gamma, beta, moving_mean, moving_var, eps, momentum):
    # 通过autograd来判断当前模式是训练模式还是预测模式
    if not autograd.is_training():
        # 如果是在预测模式下,直接使用传入的移动平均所得的均值和方差
        X_hat = (X - moving_mean) / nd.sqrt(moving_var + eps)
    else:
        assert len(X.shape) in (2, 4)
        if len(X.shape) == 2:
            # 使用全连接层的情况,计算特征维上的均值和方差
            mean = X.mean(axis=0)
            var = ((X - mean) ** 2).mean(axis=0)
        else:
            # 使用二维卷积层的情况,计算通道维上(axis=1)的均值和方差。这里我们需要保持
            # X的形状以便后面可以做广播运算
            mean = X.mean(axis=(0, 2, 3), keepdims=True)
            var = ((X - mean) ** 2).mean(axis=(0, 2, 3), keepdims=True)
        # 训练模式下用当前的均值和方差做标准化
        X_hat = (X - mean) / nd.sqrt(var + eps)
        # 更新移动平均的均值和方差
        moving_mean = momentum * moving_mean + (1.0 - momentum) * mean
        moving_var = momentum * moving_var + (1.0 - momentum) * var
    Y = gamma * X_hat + beta  # 拉伸和偏移
    return Y, moving_mean, moving_var

使用BN的LeNet网络

net = nn.Sequential()
net.add(nn.Conv2D(6, kernel_size=5),
        BatchNorm(6, num_dims=4),
        nn.Activation('sigmoid'),
        nn.MaxPool2D(pool_size=2, strides=2),
        nn.Conv2D(16, kernel_size=5),
        BatchNorm(16, num_dims=4),
        nn.Activation('sigmoid'),
        nn.MaxPool2D(pool_size=2, strides=2),
        nn.Dense(120),
        BatchNorm(120, num_dims=2),
        nn.Activation('sigmoid'),
        nn.Dense(84),
        BatchNorm(84, num_dims=2),
        nn.Activation('sigmoid'),
        nn.Dense(10))
lr, num_epochs, batch_size, ctx = 1.0, 5, 256, d2l.try_gpu()
net.initialize(ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs)

查看参数

net[1].gamma.data().reshape((-1,)), net[1].beta.data().reshape((-1,))
  • 查看BatchNorm类的文档来了解更多使用方法,例如,如何在训练时使用基于全局平均的均值和方差。

残差网络(ResNet)

理论上增加网络更容易降低训练误差。然而在实践中,添加过多层后训练误差往往不降反升。针对这个问题,2015年何凯明等提出了残差网络。

残差块,右图虚线框中的部分则需要拟合出有关恒等映射的残差映射f(x)−x。这个残差映射在实际中往往更容易优化。

在残差块中,输入可通过跨层的数据线路更快地向前传播。

ResNet沿用了VGG全3x3卷积层的设计。残差块里首先有2个有相同输出通道数的3x3卷积层。每个卷积层后接一个BN和ReLU激活函数。然后将输入直接加在最后的ReLU前。这样的设计要求两个卷积层的输出和输入形状一样,从而可以相加。如果想改变通道数,就需要引入一个额外的1x1卷积层来讲输入变换成需要的形状后再做相加运算。

import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import nn

class Residual(nn.Block):  # 本类已保存在d2lzh包中方便以后使用
    def __init__(self, num_channels, use_1x1conv=False, strides=1, **kwargs):
        super(Residual, self).__init__(**kwargs)
        self.conv1 = nn.Conv2D(num_channels, kernel_size=3, padding=1,
                               strides=strides)
        self.conv2 = nn.Conv2D(num_channels, kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2D(num_channels, kernel_size=1,
                                   strides=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm()
        self.bn2 = nn.BatchNorm()

    def forward(self, X):
        Y = nd.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        return nd.relu(Y + X)

查看输入和输出形状的一致情况

blk = Residual(3)
blk.initialize()
X = nd.random.uniform(shape=(4, 3, 6, 6))
blk(X).shape  # (4, 3, 6, 6)

ResNet的前两层跟之前介绍的GoogLeNet中的一样。不同之处是增加了BN。

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
        nn.BatchNorm(), nn.Activation('relu'),
        nn.MaxPool2D(pool_size=3, strides=2, padding=1))

GoogLeNet在后面接了4个由Inception块组成的模块,ResNet则使用4个由残差块组成的模块,每个模块使用若干个同样输出通道数的残差块。

def resnet_block(num_channels, num_residuals, first_block=False):
    blk = nn.Sequential()
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.add(Residual(num_channels, use_1x1conv=True, strides=2))
        else:
            blk.add(Residual(num_channels))
    return blk
net.add(resnet_block(64, 2, first_block=True),
        resnet_block(128, 2),
        resnet_block(256, 2),
        resnet_block(512, 2))

加入全局平均池化层后接上全连接层输出。

net.add(nn.GlobalAvgPool2D(), nn.Dense(10))
X = nd.random.uniform(shape=(1, 1, 224, 224))
net.initialize()
for layer in net:
    X = layer(X)
    print(layer.name, 'output shape:\t', X.shape)
lr, num_epochs, batch_size, ctx = 0.05, 5, 256, d2l.try_gpu()
net.initialize(force_reinit=True, ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs)
  • 残差块通过跨层的数据通道从而能够训练出有效的深度神经网络。
  • ResNet深刻影响了后来的深度神经网络的设计。

稠密连接网络(DenseNet)

ResNet中的跨层连接设计引申出了数个后续工作。本节介绍其中的一个:稠密连接网络(DenseNet)

DenseNet在通道维上连结,这样模块A的输出可以直接传入模块B后面的层。这个设计里,模块A直接跟模块B后面的所有层连接在一起。这也是它被称为“稠密连接”的原因。

DenseNet的主要构建模块是稠密块(dense block)和过度层(transition layer)。前者定义了输入和输出是如何连接的,后者则用来控制通道数,使之不过大。

稠密块由多个conv_block组成,每块使用相同的输出通道数。但在前向计算时,我们将每块的输入和输出在通道维上连接。

import d2lzh as d2l
from mxnet import gluon, init, nd
from mxnet.gluon import nn

def conv_block(num_channels):
    blk = nn.Sequential()
    blk.add(nn.BatchNorm(), nn.Activation('relu'),
            nn.Conv2D(num_channels, kernel_size=3, padding=1))
    return blk

class DenseBlock(nn.Block):
    def __init__(self, num_convs, num_channels, **kwargs):
        super(DenseBlock, self).__init__(**kwargs)
        self.net = nn.Sequential()
        for _ in range(num_convs):
            self.net.add(conv_block(num_channels))

    def forward(self, X):
        for blk in self.net:
            Y = blk(X)
            X = nd.concat(X, Y, dim=1)  # 在通道维上将输入和输出连结
        return X

在下面的例子中,我们定义一个有2个输出通道数为10的卷积块。使用通道数为3的输入时,我们会得到通道数为3+2×10=23的输出。卷积块的通道数控制了输出通道数相对于输入通道数的增长,因此也被称为增长率(growth rate)。

blk = DenseBlock(2, 10)
blk.initialize()
X = nd.random.uniform(shape=(4, 3, 8, 8))
Y = blk(X)
Y.shape   # (4, 23, 8, 8)

过渡层,每个稠密块都会带来通道数的增加,使用过多则会带来过于复杂的模型。过渡层用来控制模型复杂度。它通过1x1卷积层来减少通道数,并使用步幅为2的平均池化层减半高和宽,从而进一步降低模型复杂度。

def transition_block(num_channels):
    blk = nn.Sequential()
    blk.add(nn.BatchNorm(), nn.Activation('relu'),
            nn.Conv2D(num_channels, kernel_size=1),
            nn.AvgPool2D(pool_size=2, strides=2))
    return blk
blk = transition_block(10)
blk.initialize()
blk(Y).shape  # (4, 10, 4, 4)

DenseNet模型,首先使用同ResNet一样的单卷积层和最大池化层。

net = nn.Sequential()
net.add(nn.Conv2D(64, kernel_size=7, strides=2, padding=3),
        nn.BatchNorm(), nn.Activation('relu'),
        nn.MaxPool2D(pool_size=3, strides=2, padding=1))

与ResNet一样使用4个稠密块

num_channels, growth_rate = 64, 32  # num_channels为当前的通道数
num_convs_in_dense_blocks = [4, 4, 4, 4]

for i, num_convs in enumerate(num_convs_in_dense_blocks):
    net.add(DenseBlock(num_convs, growth_rate))
    # 上一个稠密块的输出通道数
    num_channels += num_convs * growth_rate
    # 在稠密块之间加入通道数减半的过渡层
    if i != len(num_convs_in_dense_blocks) - 1:
        num_channels //= 2
        net.add(transition_block(num_channels))

最后接上全局池化层和全连接层来输出

net.add(nn.BatchNorm(), nn.Activation('relu'), nn.GlobalAvgPool2D(),
        nn.Dense(10))
lr, num_epochs, batch_size, ctx = 0.1, 5, 256, d2l.try_gpu()
net.initialize(ctx=ctx, init=init.Xavier())
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': lr})
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
d2l.train_ch5(net, train_iter, test_iter, batch_size, trainer, ctx,
              num_epochs)
  • DenseNet论文中提到的一个优点是模型参数比ResNet的更小,这是为什么?
  • DenseNet被人诟病的一个问题是内存或显存消耗过多。真的会这样吗?可以把输入形状换成224×224224×224,来看看实际的消耗。
  • 实现DenseNet论文中的表1提出的不同版本的DenseNet [1]。

[1] Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (Vol. 1, No. 2).

 

  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值