POJ 3186(区间DP)

题目链接:http://poj.org/problem?id=3186

 

题目大意:一个数列,可以从两端取数,取出后乘以自己是第几个被取的加和求最大值

 

题目思路:一共两种情况,要么从左边取要么从右边取,定义dp[i][j]是左边取i个右边取j个的最大值,那么dp[i][j]=max(dp[i-1][j]+(i+j)*a[i],dp[i][j-1]+(i+j)*a[n-j+1]

 

以下是代码:

#include<bits/stdc++.h>
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<math.h>
using namespace std;
#define inf 0x3f3f3f3f
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define per(i,a,b) for(int i=a;i>=b;i--)
#define ll long long
const int MAXN = 2005;
int a[MAXN],n;
ll dp[MAXN][MAXN];
int main(){
    while(~scanf("%d",&n)){
        rep(i,1,n)scanf("%d",&a[i]);
        memset(dp,0,sizeof(dp));
        ll ans=0;
        rep(i,0,n){
            rep(j,0,n){
                if(i&&j){
                    dp[i][j]=max(dp[i-1][j]+(ll)(i+j)*a[i],dp[i][j-1]+(ll)(i+j)*a[n-j+1]);
                    continue;
                }
                if(i)dp[i][j]=dp[i-1][j]+(ll)(i+j)*a[i];
                if(j)dp[i][j]=dp[i][j-1]+(ll)(i+j)*a[n-j+1];
            }
        }
        rep(i,0,n){
            ans=max(dp[i][n-i],ans);
        }
        printf("%lld\n",ans);
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值