35_pytorch 过拟合解决办法 (Early Stop, Dropout)

关于"深度学习过拟合解决方案":
https://blog.csdn.net/tototuzuoquan/article/details/113802684?spm=1001.2014.3001.5501

对于深度学习网络的过拟合,一般的解决方案有:
Early stop
在模型训练过程中,提前终止。这里可以根据具体指标设置early stop的条件,比如可以是loss的大小,或者acc/f1等值的epoch之间的大小对比。

More data
更多的数据集。增加样本也是一种解决方案,根据不同场景和数据不同的数据增强方法。

正则化
常用的有L1,L2正则化

Droup Out
以一定的概率使某些神经元停止工作

BatchNorm
对神经元作归一化

1.32.Early Stop, Dropout

1.32.1.Early Stopping

在这里插入图片描述
Early Stop的概念非常简单,在我们一般训练中,经常由于过拟合导致在训练集上的效果好,而在测试集上的效果非常差。因此我们可以让训练提前停止,在测试集上达到最好的效果时候就停止训练,而不是等到在训练集上饱和再停止,这个操作叫做Early Stop

随着横坐标epoch的进行,train部分的accuracy持续上升,train部分的accuracy增加到临时点后会开始发生over fitting现象,我们一般使用Validation来对临界点进行检测。在取到最大值时便停止调test,将此时取得的参数保存用来做最终的模型参数。

可注意到train若不停止会进行无限长的时间,Early stop的引入会提前终止训练,即在test accuracy上升到临界值不发生改变后,就停止训练。

由此我们总结Early stop有以下特点:
1.通过Validation set来选择合适的参数
2.通过Validation来进行检测模型优化表现
3.在最高的Val performance(表现时)停止优化

Early Stop的过程
在这里插入图片描述

1.32.2.Dropout

Dropout是用来防止Overfitting十分有效的手段,其思路构建假设为:
1.不全部学习参数,只学习有效的参数
2.每层链接都有一定的概率”丢失”
在这里插入图片描述
通过”丢失”链接后,有效的减少运算量,使优化更为平滑

在2012年,Hinton在其论文《Improving neural networks by preventing co-adaptation of feature detectors》中提出Dropout。当一个复杂的前馈神经网络被训练在小的数据集时,容易造成过拟合。为了防止过拟合,可以通过阻止特征检测器的共同作用来提高神经网络的性能。

在2012年,Alex、Hinton在其论文《ImageNet Classification with Deep Convolutional Neural Networks》中用到了Dropout算法,用于防止过拟合。并且,这篇论文提到的AlexNet网络模型引爆了神经网络应用热潮,并赢得了2012年图像识别大赛冠军,使得CNN成为图像分类上的核心算法模型。

随后,又有一些关于Dropout的文章《Dropout:A Simple Way to Prevent Neural Networks from Overfitting》、《Improving Neural Networks with Dropout》、《Dropout as data augmentation》。

从上面的论文中,我们能感受到Dropout在深度学习中的重要性。那么,到底什么是Dropout呢?

Dropout可以作为训练深度神经网络的一种trick供选择。在每个训练批次中,通过忽略一半的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特殊检测器(隐层节点)间的相互作用,检测器相互作用的是指某些检测器依赖其他检测器才能发挥作用。

Dropout说的简单一点就是:我们在前向传播的时候,让某个神经元的**值以一定的概率p停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征,如上图所示。
在这里插入图片描述

# -*- coding: UTF-8 -*-

import torch

net_dropped = torch.nn.Sequential(
    torch.nn.Linear(784, 200),
    torch.nn.Dropout(0.5),       # drop 50% of the neuron
    torch.nn.ReLU(),
    torch.nn.Linear(200, 200),
    torch.nn.Dropout(0.5),       # drop 50% of the neuron
    torch.nn.ReLU(),
    torch.nn.Linear(200, 10),
)

pytorch与tensorflow中Dropout函数的区别

torch.nn.Dropout(p=dropout_prob)

tf.nn.dropout(keep_prob)

值得注意的是pytorch中传入的参数丢弃权重参数的概率:
而在tensorflow中传入的参数是保持权重参数的概率,两者的关系是相加为1.

Behavior between train and test

for epoch in range(epochs):
    
    # train
    net_dropped.train()
    for batch_idx, (data, target) in enumerate(train_loader):
        ...
    net_dropped.eval()
    test_loss = 0
    correct = 0
    for data, target in test_loader:
        ...

model.train() :启用 BatchNormalization 和 Dropout
model.eval(): 不启用BatchNormalization和Dropout

在训练集中我们在训练模型的过程中需要引入Dropout让模型具备更加强大的泛化能力。而在测试集中,则不需要在测试的时候也进行Dropout。否则会降低模型的表现能力。所以需要添加语句net_dropout.eval(),表示切换到不启用Dropout模式,再利用测试集测试模型性能。

1.32.3.SGD随机梯度下降

(1)SGD与确定性模型和随机模型的区别
Stochastic Gradient Descent
在这里插入图片描述

不同于一般的随机,SGD中的随机其实是符合一定函数分布,如正态分布这种,这种随机也不同于一般的Deterministic Model(确定性模型),确定性模型相当于一个f(x),有什么样的输入就会有相应的输出。
(2)SGD和经典梯度下降算法区别
在这里插入图片描述
在这里插入图片描述
为了解决经典的梯度下降法在每次对模型参数进行更新时,需要遍历所有的训练数据。当M很大的时候,就需要耗费巨大的计算资源和计算时间这个弊端,因此引入了SGD(随机梯度下降算法)

随机梯度下降法用单个训练数据即可对模型参数进行一次更新,大大加快了训练速度。

为了降低随机梯度的方差,从而使得迭代算法更加稳定,也为了充分利用高度优化的矩阵运算操作,在实际操作中,我们会同时处理若干训练数据,也就是指定的一个Batchsize,这种SGD叫做BGD。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

涂作权的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值