01_Win10下CUDA的安装、查看并升级Nvidia显卡驱动、安装CUDA、设置环境变量、测试CUDA是否安装成功

本文详细介绍了在Windows 10系统中如何安装CUDA Toolkit 10.1,包括检查并升级Nvidia显卡驱动,下载安装CUDA,设置环境变量,以及测试CUDA安装是否成功的步骤。过程中提到了通过NVIDIA官方网站获取最新驱动和CUDA工具包,并强调了安装后的环境变量配置和测试方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.1.Win10下CUDA的安装(此部分只是记录一下安装过程,和上面版本可能不对应)

以下部分来自:https://blog.csdn.net/weixin_41762173/article/details/104261249

1.1.1.查看并升级Nvidia显卡驱动

A:在win10系统里,点击右下角的向上箭头,看到缩略图,英伟达的logo下方有个“!”,提示驱动有更新,若已是最新版本,跳过以下2、3两步。
在这里插入图片描述

B: 点击后跳转到NVIDIA官网,点击“自动驱动程序更新”下的下载按钮
在这里插入图片描述

C: 下载完成并安装后重启计算机,打开桌面上新安装的GeForce Experience程序,进入界面后,完成登录或者注册后,下载最新版本的GeForce Game Ready Driver,下载完成后安装即可,安装完成后可能会需要重启计算机

D:查看当前显卡驱动版本,鼠标右键,打开NVIDIA控制面板,选择 “帮助”下的“系统信息”,可看到当前的显卡驱动版本
在这里插入图片描述

1.1.2.安装CUDA

A: 下载正确版本的cuda:
进入Nvidia CUDA下载官网(https://developer.nvidia.com/cuda-downloads),下载对应版本的CUDA-Toolkit,首先在官网查看对应Release Notes(https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#abstract)版本发布信息:
在这里插入图片描述

由于conda的清华镜像源还没有cuda10.2的版本,这里我们可下载10.1版本, CUDA10.1下载地址(https://developer.nvidia.com/cuda-10.1-download-archive-update1)。
在这里插入图片描述
B: 安装CUDA:
点击下载好的exe安装程序后,检查系统兼容性后选择自定义安装,选择安装以下4个组件即可,点击下一步,安装完成。
在这里插入图片描述

如果安装完后没有报错,并且C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1和C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1目录路径都存在的话,可进行下一步设置环境变量。

1.1.3.设置环境变量

在系统变量中添加以下变量(与Path同级位置)

CUDA_PATH = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
CUDA_PATH_V9_1 = C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1
 
##正常情况下上面两个电脑直接生成了
 
CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v10.1
CUDA_LIB_PATH = %CUDA_PATH%\lib\x64
CUDA_BIN_PATH = %CUDA_PATH%\bin
CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64
CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64

在这里插入图片描述
依次填入后,找到path依次点击新建,将 %CUDA_LIB_PATH%;%CUDA_BIN_PATH%;%CUDA_SDK_BIN_PATH%;%CUDA_SDK_LIB_PATH%;填完后如下图,全部安装好后一定要记得重启!。
在这里插入图片描述

1.1.4.测试CUDA是否安装成功:

进入cuda安装路径:C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\extras\demo_suite
同样用cmd,分别输入deviceQuery.exe 和 bandwidthTest.exe,若都显示 Rsult=PASS 则说明通过,否则需要重新安装。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值